Papers
Topics
Authors
Recent
2000 character limit reached

Explicit orthogonal and unitary designs (2310.13597v1)

Published 20 Oct 2023 in cs.CC

Abstract: We give a strongly explicit construction of $\varepsilon$-approximate $k$-designs for the orthogonal group $\mathrm{O}(N)$ and the unitary group $\mathrm{U}(N)$, for $N=2n$. Our designs are of cardinality $\mathrm{poly}(Nk/\varepsilon)$ (equivalently, they have seed length $O(nk + \log(1/\varepsilon)))$; up to the polynomial, this matches the number of design elements used by the construction consisting of completely random matrices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. A fast and simple randomized parallel algorithm for the maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986.
  2. Simple constructions of almost k𝑘kitalic_k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.
  3. Uniform distribution of points on a sphere and certain ergodic properties of solutions of linear ordinary differential equations in a complex domain. Doklady Akademii Nauk SSSR, 148:9–12, 1963.
  4. Noga Alon. Explicit expanders of every degree and size. Combinatorica, 41(4):447–463, 2021.
  5. Strong asymptotic freeness for independent uniform variables on compact groups associated to non-trivial representations. Technical Report 2012.08759, arXiv, 2020.
  6. Models of quantum complexity growth. PRX Quantum, 2(3):030316, 2021.
  7. A spectral gap theorem in simple Lie groups. Inventiones Mathematicae, 205(2):337–361, 2016.
  8. A spectral gap theorem in SU⁢(d)SU𝑑{\rm SU}(d)roman_SU ( italic_d ). Journal of the European Mathematical Society (JEMS), 14(5):1455–1511, 2012.
  9. Length Spaces, pages 32–46. Springer Berlin Heidelberg, 1999.
  10. Simple permutations mix even better. Random Structures & Algorithms, 32(3):274–289, 2008.
  11. Local random quantum circuits are approximate polynomial-designs. Communications in Mathematical Physics, 346(2):397–434, 2016.
  12. On the explicit constructions of certain unitary t𝑡titalic_t-designs. Journal of Physics. A., 52(49):495301, 17, 2019.
  13. Richard Brauer. On algebras which are connected with the semisimple continuous groups. Annals of Mathematics, 38(4):857–872, 1937.
  14. Exact and approximate unitary 2-designs and their application to fidelity estimation. Physical Review A, 80(1):012304, 2009.
  15. Quantum data hiding. Transactions on Information Theory, 48(3):580–598, 2002.
  16. A recursive construction of t𝑡titalic_t-wise uniform permutations. Random Structures & Algorithms, 46(3):531–540, 2015.
  17. W. Timothy Gowers. An almost m𝑚mitalic_m-wise independent random permutation of the cube. Combinatorics, Probability and Computing, 5(2):119–130, 1996.
  18. Cheryl Grood. Brauer algebras and centralizer algebras for SO⁢(2⁢n,𝐂)SO2𝑛𝐂{\rm SO}(2n,{\bf C})roman_SO ( 2 italic_n , bold_C ). Journal of Algebra, 222(2):678–707, 1999.
  19. Jonas Haferkamp. Random quantum circuits are approximate unitary t𝑡titalic_t-designs in depth o⁢(n⁢t5+o⁢(1))𝑜𝑛superscript𝑡5𝑜1o(nt^{5+o(1)})italic_o ( italic_n italic_t start_POSTSUPERSCRIPT 5 + italic_o ( 1 ) end_POSTSUPERSCRIPT ). Quantum, 6:795, 2022.
  20. Real randomized benchmarking. Quantum, 2:85, 2018.
  21. Improved spectral gaps for random quantum circuits: large local dimensions and all-to-all interactions. Physical Review A, 104(2):Paper No. 022417, 18, 2021.
  22. Query-optimal estimation of unitary channels in diamond distance. Technical Report 2302.14066, arXiv, 2023.
  23. Efficient quantum tensor product expanders and k𝑘kitalic_k-designs. In Proceedings of the 2009 International Workshop on Approximation, Randomization, and Combinatorial Optimization (APPROX), pages 548–561. Springer, 2009.
  24. Simple permutations mix well. Theoretical Computer Science, 348(2-3):251–261, 2005.
  25. Almost Ramanujan expanders from arbitrary expanders via operator amplification. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science—FOCS 2022, pages 378–388. IEEE Computer Soc., Los Alamitos, CA, [2022] ©2022.
  26. Martin Kassabov. Symmetric groups and expander graphs. Inventiones Mathematicae, 170(2):327–354, 2007.
  27. Almost optimal pseudorandom generators for spherical caps. In Proceedings of the 2015 Symposium on the Theory of Computing (STOC), pages 247–256. ACM, 2015.
  28. Sparser Johnson–Lindenstrauss transforms. Journal of the ACM, 61(1):Art. 4, 23, 2014.
  29. Derandomized constructions of k-wise (almost) independent permutations. Algorithmica, 55(1):113–133, 2009.
  30. Kothari, Pravesh. Personal communication. 2022.
  31. b-Bit minwise hashing. In Proceedings of the 19th Annual International Conference on World Wide Web, pages 671–680, 2010.
  32. Elizabeth Meckes. The random matrix theory of the classical compact groups, volume 218. Cambridge University Press, 2019.
  33. Explicit near-Ramanujan graphs of every degree. SIAM Journal on Computing, 51(3):STOC20–1–STOC20–23, 2022.
  34. Quantum Computation and Quantum Information. Cambridge University Press, 10th anniversary edition edition, 2010.
  35. Small-bias probability spaces: efficient constructions and applications. SIAM Journal on Computing, 22(4):838–856, 1993.
  36. Roberto Imbuzeiro Oliveira. On the convergence to equilibrium of Kac’s random walk on matrices. Ann. Appl. Probab., 19(3):1200–1231, 2009.
  37. Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):Art. 17, 24, 2008.
  38. Pseudorandom walks on regular digraphs and the 𝖱𝖫𝖱𝖫\mathsf{RL}sansserif_RL vs. 𝖫𝖫\mathsf{L}sansserif_L problem. In Proceedings of the 2006 Symposium on the Theory of Computing (STOC), pages 457–466. ACM, 2006.
  39. Derandomized squaring of graphs. Electronic Colloquium on Computational Complexity, TR05-092, 2005.
  40. Chaos and complexity by design. Journal of High Energy Physics, 2017(4):1–64, 2017.
  41. Issai Schur. Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen. PhD thesis, Universität Berlin, 1901.
  42. Pranab Sen. Efficient quantum tensor product expanders and unitary t𝑡titalic_t-designs via the zigzag product. Technical Report 1808.10521, arXiv, 2018.
  43. Yaoyun Shi. Both Toffoli and Controlled-NOT need little help to do universal quantum computation. Technical Report quant-ph/0205115, arXiv, 2002.
  44. Terence Tao. Hilbert’s fifth problem and related topics, volume 153. American Mathematical Society, 2014.
  45. Zak Webb. The Clifford group forms a unitary 3-design. Quantum Information & Computation, 16(15-16):1379–1400, 2016.
  46. Hermann Weyl. The Classical Groups. Their Invariants and Representations. Princeton University Press, 1939.
  47. Wikipedia contributors. Projective unitary group. https://en.wikipedia.org/wiki/Projective_unitary_group, accessed September 16, 2023.
  48. Qiaochu Yuan. Four flavors of Schur–Weyl duality, 2012. https://qchu.wordpress.com/2012/11/13/four-flavors-of-schur-weyl-duality/.
  49. Randomized benchmarking using unitary t𝑡titalic_t-design for average fidelity estimation of practical quantum circuit. Technical Report 1711.08098, arXiv, 2017.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.