Exploring In-Context Learning of Textless Speech Language Model for Speech Classification Tasks (2310.12477v2)
Abstract: Ever since the development of GPT-3 in the NLP field, in-context learning (ICL) has played an essential role in utilizing LLMs. By presenting the LM utterance-label demonstrations at the input, the LM can accomplish few-shot learning without relying on gradient descent or requiring explicit modification of its parameters. This enables the LM to perform various downstream tasks in a black-box manner. Despite the success of ICL in NLP, little work is exploring the possibility of ICL in speech processing. This study is the first work exploring ICL for speech classification tasks with textless speech LM. We first show that the current speech LM lacks the ICL capability. We then perform warmup training on the speech LM, equipping the LM with demonstration learning capability. This paper explores and proposes the first speech LM capable of performing unseen classification tasks in an ICL manner.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.