Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Neural network approach to quasiparticle dispersions in doped antiferromagnets (2310.08578v1)

Published 12 Oct 2023 in cond-mat.str-el, cond-mat.dis-nn, and quant-ph

Abstract: Numerically simulating spinful, fermionic systems is of great interest from the perspective of condensed matter physics. However, the exponential growth of the Hilbert space dimension with system size renders an exact parameterization of large quantum systems prohibitively demanding. This is a perfect playground for neural networks, owing to their immense representative power that often allows to use only a fraction of the parameters that are needed in exact methods. Here, we investigate the ability of neural quantum states (NQS) to represent the bosonic and fermionic $t-J$ model - the high interaction limit of the Fermi-Hubbard model - on different 1D and 2D lattices. Using autoregressive recurrent neural networks (RNNs) with 2D tensorized gated recurrent units, we study the ground state representations upon doping the half-filled system with holes. Moreover, we present a method to calculate dispersion relations from the neural network state representation, applicable to any neural network architecture and any lattice geometry, that allows to infer the low-energy physics from the NQS. To demonstrate our approach, we calculate the dispersion of a single hole in the $t-J$ model on different 1D and 2D square and triangular lattices. Furthermore, we analyze the strengths and weaknesses of the RNN approach for fermionic systems, pointing the way for an accurate and efficient parameterization of fermionic quantum systems using neural quantum states.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.