Neural Network Quantum States for the Interacting Hofstadter Model with Higher Local Occupations and Long-Range Interactions (2405.04472v3)
Abstract: Due to their immense representative power, neural network quantum states (NQS) have gained significant interest in current research. In recent advances in the field of NQS, it has been demonstrated that this approach can compete with state-of-the-art numerical techniques, making NQS a compelling alternative, in particular for the simulation of large, two-dimensional quantum systems. In this study, we show that recurrent neural network (RNN) wave functions can be employed to study systems relevant to current research in quantum many-body physics. Specifically, we employ a 2D tensorized gated RNN to explore the bosonic Hofstadter model with a variable local Hilbert space cut-off and long-range interactions. At first, we benchmark the RNN-NQS for the Hofstadter-Bose-Hubbard (HBH) Hamiltonian on a square lattice. We find that this method is, despite the complexity of the wave function, capable of efficiently identifying and representing most ground state properties. Afterwards, we apply the method to an even more challenging model for current methods, namely the Hofstadter model with long-range interactions. This model describes Rydberg-dressed atoms on a lattice subject to a synthetic magnetic field. We study systems of size up to $12 \times 12$ sites and identify three different regimes by tuning the interaction range and the filling fraction $\nu$. In addition to phases known from the HBH model at short-ranged interaction, we observe bubble crystals and Wigner crystals for long-ranged interactions. Especially interesting is the evidence of a bubble crystal phase on a lattice, as this gives experiments a starting point for the search of clustered liquid phases, possibly hosting non-Abelian anyon excitations. In our work we show that NQS are an efficient and reliable simulation method for quantum systems, which are the subject of current research.
- A. Kitaev, Annals of Physics 303, 2 (2003).
- N. Gemelke, E. Sarajlic, and S. Chu, Rotating few-body atomic systems in the fractional quantum hall regime (2010), arXiv:1007.2677 [cond-mat.quant-gas] .
- R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
- G. Möller and N. R. Cooper, Phys. Rev. Lett. 115, 126401 (2015).
- F. Harper, The Hofstadter model and other fractional chern insulators, Ph.D. thesis, University of Oxford (2015).
- A. S. Sørensen, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 94, 086803 (2005).
- G. Möller and N. R. Cooper, Phys. Rev. Lett. 103, 105303 (2009).
- C. Repellin, J. Léonard, and N. Goldman, Phys. Rev. A 102, 063316 (2020).
- R. N. Palmer, A. Klein, and D. Jaksch, Phys. Rev. A 78, 013609 (2008).
- G. Moore and N. Read, Nuclear Physics B 360, 362 (1991).
- A. Sterdyniak, N. Regnault, and G. Möller, Physical Review B 86, 10.1103/physrevb.86.165314 (2012).
- F. Becca and S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press, 2017).
- G. Pan and Z. Y. Meng, The sign problem in quantum monte carlo simulations, in Encyclopedia of Condensed Matter Physics (Elsevier, 2024) p. 879–893.
- S. R. White, Physical Review Letters 69, 2863 (1992).
- U. Schollwöck, Annals of Physics 326, 96 (2011).
- T. Macrì and T. Pohl, Physical Review A 89, 10.1103/physreva.89.011402 (2014).
- M. Barbier, H. Lütjeharms, and W. Hofstetter, Phys. Rev. A 105, 013326 (2022).
- J. Kazemi and H. Weimer, Phys. Rev. Lett. 130, 163601 (2023).
- A. Browaeys and T. Lahaye, Nature Physics 16, 132 (2020).
- F. Grusdt and M. Fleischhauer, Physical Review A 87, 10.1103/physreva.87.043628 (2013).
- G. Carleo and M. Troyer, Science 355, 602 (2017).
- M. Hibat-Allah, R. G. Melko, and J. Carrasquilla, Supplementing recurrent neural network wave functions with symmetry and annealing to improve accuracy (2022), arXiv:2207.14314 .
- J. Carrasquilla and R. G. Melko, Nature Physics 13, 431 (2017).
- J. Carrasquilla and G. Torlai, Neural networks in quantum many-body physics: a hands-on tutorial (2021).
- K. Choo, T. Neupert, and G. Carleo, Physical Review B 100, 10.1103/physrevb.100.125124 (2019).
- K. Çeven, M. Ö. Oktel, and A. Keleş, Physical Review A 106, 10.1103/physreva.106.063320 (2022).
- H. Saito, Journal of the Physical Society of Japan 86, 093001 (2017).
- H. Saito and M. Kato, Journal of the Physical Society of Japan 87, 014001 (2018).
- K. McBrian, G. Carleo, and E. Khatami, Journal of Physics: Conference Series 1290, 012005 (2019).
- V. Vargas-Calderón, H. Vinck-Posada, and F. A. González, Journal of the Physical Society of Japan 89, 10.7566/jpsj.89.094002 (2020).
- M. Hibat-Allah, R. G. Melko, and J. Carrasquilla, Investigating topological order using recurrent neural networks (2023), arXiv:2303.11207 .
- R. Kaubruegger, L. Pastori, and J. C. Budich, Physical Review B 97, 10.1103/physrevb.97.195136 (2018).
- C.-X. Li, S. Yang, and J.-B. Xu, Scientific Reports 11, 16667 (2021).
- R. Kelley, Sequence modeling with recurrent tensornetworks (2016).
- A. Chen and M. Heyl, Efficient optimization of deep neural quantum states toward machine precision (2023), arXiv:2302.01941 .
- A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, Pixel recurrent neural networks (2016), arXiv:1601.06759 .
- Y.-H. Zhang and M. D. Ventra, Physical Review B 107, 10.1103/physrevb.107.075147 (2023).
- C. Roth and A. H. MacDonald, Group convolutional neural networks improve quantum state accuracy (2021), arXiv:2104.05085 [quant-ph] .
- M. Schmitt and M. Heyl, Physical Review Letters 125, 10.1103/physrevlett.125.100503 (2020).
- M. Gori, A. Betti, and S. Melacci, Machine Learning: A Constraint-Based Approach (Elsevier Science, 2023).
- D. Wu, L. Wang, and P. Zhang, Phys. Rev. Lett. 122, 080602 (2019).
- C. Roth, Iterative retraining of quantum spin models using recurrent neural networks (2020), arXiv:2003.06228 .
- K. Inui, Y. Kato, and Y. Motome, Phys. Rev. Res. 3, 043126 (2021).
- K. Choo, A. Mezzacapo, and G. Carleo, Nature Communications 11, 10.1038/s41467-020-15724-9 (2020).
- Z. Denis and G. Carleo, Accurate neural quantum states for interacting lattice bosons (2024), arXiv:2404.07869 [quant-ph] .
- W. K. Hastings, Biometrika 57, 97 (1970).
- T. D. Barrett, A. Malyshev, and A. I. Lvovsky, Autoregressive neural-network wavefunctions for ab initio quantum chemistry (2022), arXiv:2109.12606 [physics.chem-ph] .
- P. G. Harper, Proceedings of the Physical Society A 68, 874 (1955).
- N. Henkel, R. Nath, and T. Pohl, Phys. Rev. Lett. 104, 195302 (2010).
- N. R. Cooper, E. H. Rezayi, and S. H. Simon, Phys. Rev. Lett. 95, 200402 (2005).
- D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
- A. Kol and N. Read, Phys. Rev. B 48, 8890 (1993).
- For details on the DMRG simulations see B.
- M. Burrello, I. Lesanovsky, and A. Trombettoni, Phys. Rev. Res. 2, 023290 (2020).
- E. Ledinauskas and E. Anisimovas, Universal performance gap of neural quantum states applied to the hofstadter-bose-hubbard model (2024), arXiv:2405.01981 [quant-ph] .
- A. Graves, S. Fernandez, and J. Schmidhuber, Multi-dimensional recurrent neural networks (2007), arXiv:0705.2011 .
- S. Sorella, Phys. Rev. Lett. 80, 4558 (1998).
- D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2017), arXiv:1412.6980 .
- I. Loshchilov and F. Hutter, Decoupled weight decay regularization (2019), arXiv:1711.05101 [cs.LG] .
- M. Reh, M. Schmitt, and M. Gärttner, Physical Review B 107, 10.1103/physrevb.107.195115 (2023).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.