Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Neural Network Quantum States analysis of the Shastry-Sutherland model (2303.14108v3)

Published 24 Mar 2023 in cond-mat.dis-nn

Abstract: We utilize neural network quantum states (NQS) to investigate the ground state properties of the Heisenberg model on a Shastry-Sutherland lattice using the variational Monte Carlo method. We show that already relatively simple NQSs can be used to approximate the ground state of this model in its different phases and regimes. We first compare several types of NQSs with each other on small lattices and benchmark their variational energies against the exact diagonalization results. We argue that when precision, generality, and computational costs are taken into account, a good choice for addressing larger systems is a shallow restricted Boltzmann machine NQS. We then show that such NQS can describe the main phases of the model in zero magnetic field. Moreover, NQS based on a restricted Boltzmann machine correctly describes the intriguing plateaus forming in magnetization of the model as a function of increasing magnetic field.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.