Inference for Nonlinear Endogenous Treatment Effects Accounting for High-Dimensional Covariate Complexity
Abstract: Nonlinearity and endogeneity are prevalent challenges in causal analysis using observational data. This paper proposes an inference procedure for a nonlinear and endogenous marginal effect function, defined as the derivative of the nonparametric treatment function, with a primary focus on an additive model that includes high-dimensional covariates. Using the control function approach for identification, we implement a regularized nonparametric estimation to obtain an initial estimator of the model. Such an initial estimator suffers from two biases: the bias in estimating the control function and the regularization bias for the high-dimensional outcome model. Our key innovation is to devise the double bias correction procedure that corrects these two biases simultaneously. Building on this debiased estimator, we further provide a confidence band of the marginal effect function. Simulations and an empirical study of air pollution and migration demonstrate the validity of our procedures.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.