Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Doubly-Robust Inference for Conditional Average Treatment Effects with High-Dimensional Controls (2301.06283v1)

Published 16 Jan 2023 in econ.EM and stat.AP

Abstract: Plausible identification of conditional average treatment effects (CATEs) may rely on controlling for a large number of variables to account for confounding factors. In these high-dimensional settings, estimation of the CATE requires estimating first-stage models whose consistency relies on correctly specifying their parametric forms. While doubly-robust estimators of the CATE exist, inference procedures based on the second stage CATE estimator are not doubly-robust. Using the popular augmented inverse propensity weighting signal, we propose an estimator for the CATE whose resulting Wald-type confidence intervals are doubly-robust. We assume a logistic model for the propensity score and a linear model for the outcome regression, and estimate the parameters of these models using an $\ell_1$ (Lasso) penalty to address the high dimensional covariates. Our proposed estimator remains consistent at the nonparametric rate and our proposed pointwise and uniform confidence intervals remain asymptotically valid even if one of the logistic propensity score or linear outcome regression models are misspecified. These results are obtained under similar conditions to existing analyses in the high-dimensional and nonparametric literatures.

Citations (1)

Summary

We haven't generated a summary for this paper yet.