Papers
Topics
Authors
Recent
Search
2000 character limit reached

Data-level hybrid strategy selection for disk fault prediction model based on multivariate GAN

Published 10 Oct 2023 in stat.ML and cs.LG | (2310.06537v1)

Abstract: Data class imbalance is a common problem in classification problems, where minority class samples are often more important and more costly to misclassify in a classification task. Therefore, it is very important to solve the data class imbalance classification problem. The SMART dataset exhibits an evident class imbalance, comprising a substantial quantity of healthy samples and a comparatively limited number of defective samples. This dataset serves as a reliable indicator of the disc's health status. In this paper, we obtain the best balanced disk SMART dataset for a specific classification model by mixing and integrating the data synthesised by multivariate generative adversarial networks (GAN) to balance the disk SMART dataset at the data level; and combine it with genetic algorithms to obtain higher disk fault classification prediction accuracy on a specific classification model.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.