Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FinGAN: Generative Adversarial Network for Analytical Customer Relationship Management in Banking and Insurance (2201.11486v1)

Published 27 Jan 2022 in cs.LG, cs.CE, and cs.NE

Abstract: Churn prediction in credit cards, fraud detection in insurance, and loan default prediction are important analytical customer relationship management (ACRM) problems. Since frauds, churns and defaults happen less frequently, the datasets for these problems turn out to be naturally highly unbalanced. Consequently, all supervised machine learning classifiers tend to yield substantial false-positive rates when trained on such unbalanced datasets. We propose two ways of data balancing. In the first, we propose an oversampling method to generate synthetic samples of minority class using Generative Adversarial Network (GAN). We employ Vanilla GAN [1], Wasserstein GAN [2] and CTGAN [3] separately to oversample the minority class samples. In order to assess the efficacy of our proposed approach, we use a host of machine learning classifiers, including Random Forest, Decision Tree, support vector machine (SVM), and Logistic Regression on the data balanced by GANs. In the second method, we introduce a hybrid method to handle data imbalance. In this second way, we utilize the power of undersampling and over-sampling together by augmenting the synthetic minority class data oversampled by GAN with the undersampled majority class data obtained by one-class support vigor machine (OCSVM) [4]. We combine both over-sampled data generated by GAN and the data under-sampled by OCSVM [4] and pass the resultant data to classifiers. When we compared our results to those of Farquad et al. [5], Sundarkumar, Ravi, and Siddeshwar [6], our proposed methods outperform the previous results in terms of the area under the ROC curve (AUC) on all datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Prateek Kate (1 paper)
  2. Vadlamani Ravi (30 papers)
  3. Akhilesh Gangwar (2 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.