Papers
Topics
Authors
Recent
Search
2000 character limit reached

Enhancing Prostate Cancer Diagnosis with Deep Learning: A Study using mpMRI Segmentation and Classification

Published 9 Oct 2023 in eess.IV, cs.CV, and cs.LG | (2310.05371v2)

Abstract: Prostate cancer (PCa) is a severe disease among men globally. It is important to identify PCa early and make a precise diagnosis for effective treatment. For PCa diagnosis, Multi-parametric magnetic resonance imaging (mpMRI) emerged as an invaluable imaging modality that offers a precise anatomical view of the prostate gland and its tissue structure. Deep learning (DL) models can enhance existing clinical systems and improve patient care by locating regions of interest for physicians. Recently, DL techniques have been employed to develop a pipeline for segmenting and classifying different cancer types. These studies show that DL can be used to increase diagnostic precision and give objective results without variability. This work uses well-known DL models for the classification and segmentation of mpMRI images to detect PCa. Our implementation involves four pipelines; Semantic DeepSegNet with ResNet50, DeepSegNet with recurrent neural network (RNN), U-Net with RNN, and U-Net with a long short-term memory (LSTM). Each segmentation model is paired with a different classifier to evaluate the performance using different metrics. The results of our experiments show that the pipeline that uses the combination of U-Net and the LSTM model outperforms all other combinations, excelling in both segmentation and classification tasks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. X. Liu, D. L. Langer, M. A. Haider, Y. Yang, M. N. Wernick, and I. S. Yetik, “Prostate cancer segmentation with simultaneous estimation of markov random field parameters and class,” IEEE Transactions on Medical Imaging, vol. 28, no. 6, pp. 906–915, 2009.
  2. B. Abraham and M. S. Nair, “Automated grading of prostate cancer using convolutional neural network and ordinal class classifier,” Informatics in Medicine Unlocked, vol. 17, p. 100256, 2019.
  3. A. B. Gavade, R. B. Nerli, S. Ghagane, P. A. Gavade, and V. S. P. Bhagavatula, “Cancer cell detection and classification from digital whole slide image,” Smart Technologies in Data Science and Communication: Proceedings of SMART-DSC 2022, pp. 289–299, 2023.
  4. Z. Tabatabaei, K. Engan, J. Oliver, V. Naranjo et al., “Self-supervised learning of a tailored convolutional auto encoder for histopathological prostate grading,” arXiv preprint arXiv:2303.11837, 2023.
  5. Y. Artan, M. A. Haider, D. L. Langer, T. H. Van der Kwast, A. J. Evans, Y. Yang, M. N. Wernick, J. Trachtenberg, and I. S. Yetik, “Prostate cancer localization with multispectral mri using cost-sensitive support vector machines and conditional random fields,” IEEE Transactions on Image Processing, vol. 19, no. 9, pp. 2444–2455, 2010.
  6. A. B. Gavade, R. B. Nerli, P. B. Patil, R. R. Siddannavar, P. A. Gavade, and V. S. P. Bhagavatula, “Prostate cancer segmentation of peripheral zone and central gland regions in mpmri: Comparative analysis with deep neural network u-net and its advanced models,” IOP Book: Image processing with Python, vol. 2A, p. in press, 2023.
  7. N. Kanwal, R. Amundsen, H. Hardardottir, E. A. Janssen, and K. Engan, “Detection and localization of melanoma skin cancer in histopathological whole slide images,” arXiv preprint arXiv:2302.03014, 2023.
  8. A. B. Gavade, R. Nerli, N. Kanwal, P. A. Gavade, S. S. Pol, and S. T. H. Rizvi, “Automated diagnosis of prostate cancer using mpmri images: A deep learning approach for clinical decision support,” Computers, vol. 12, no. 8, p. 152, 2023.
  9. N. Kanwal, E. A. Janssen, and K. Engan, “Balancing privacy and progress in artificial intelligence: Anonymization in histopathology for biomedical research and education,” arXiv preprint arXiv:2307.09426, 2023.
  10. N. Kanwal, T. Eftestøl, F. Khoraminia, T. C. Zuiverloon, and K. Engan, “Vision transformers for small histological datasets learned through knowledge distillation,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining.   Springer, 2023, pp. 167–179.
  11. P. Mehta, M. Antonelli, H. U. Ahmed, M. Emberton, S. Punwani, and S. Ourselin, “Computer-aided diagnosis of prostate cancer using multiparametric mri and clinical features: A patient-level classification framework,” Medical image analysis, vol. 73, p. 102153, 2021.
  12. G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer, and H. Huisman, “Computer-aided detection of prostate cancer in mri,” IEEE transactions on medical imaging, vol. 33, no. 5, pp. 1083–1092, 2014.
  13. Y. Peng, Y. Jiang, C. Yang, J. B. Brown, T. Antic, I. Sethi, C. Schmid-Tannwald, M. L. Giger, S. E. Eggener, and A. Oto, “Quantitative analysis of multiparametric prostate mr images: differentiation between prostate cancer and normal tissue and correlation with gleason score—a computer-aided diagnosis development study,” Radiology, vol. 267, no. 3, pp. 787–796, 2013.
  14. T. Brosch, J. Peters, A. Groth, T. Stehle, and J. Weese, “Deep learning-based boundary detection for model-based segmentation with application to mr prostate segmentation,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part IV 11.   Springer, 2018, pp. 515–522.
  15. N. Aldoj, F. Biavati, F. Michallek, S. Stober, and M. Dewey, “Automatic prostate and prostate zones segmentation of magnetic resonance images using densenet-like u-net,” Scientific reports, vol. 10, no. 1, pp. 1–17, 2020.
  16. D. Karimi, G. Samei, C. Kesch, G. Nir, and S. E. Salcudean, “Prostate segmentation in mri using a convolutional neural network architecture and training strategy based on statistical shape models,” International journal of computer assisted radiology and surgery, vol. 13, pp. 1211–1219, 2018.
  17. R. Cao, A. M. Bajgiran, S. A. Mirak, S. Shakeri, X. Zhong, D. Enzmann, S. Raman, and K. Sung, “Joint prostate cancer detection and gleason score prediction in mp-mri via focalnet,” IEEE transactions on medical imaging, vol. 38, no. 11, pp. 2496–2506, 2019.
  18. X. Zhong, R. Cao, S. Shakeri, F. Scalzo, Y. Lee, D. R. Enzmann, H. H. Wu, S. S. Raman, and K. Sung, “Deep transfer learning-based prostate cancer classification using 3 tesla multi-parametric mri,” Abdominal Radiology, vol. 44, pp. 2030–2039, 2019.
  19. L. Zhang, L. Li, M. Tang, Y. Huan, X. Zhang, and X. Zhe, “A new approach to diagnosing prostate cancer through magnetic resonance imaging,” Alexandria Engineering Journal, vol. 60, no. 1, pp. 897–904, 2021.
  20. Z. Sun, P. Wu, Y. Cui, X. Liu, K. Wang, G. Gao, H. Wang, X. Zhang, and X. Wang, “Deep-learning models for detection and localization of visible clinically significant prostate cancer on multi-parametric mri,” Journal of Magnetic Resonance Imaging, 2023.
  21. A. B. Gavade, R. B. Nerli, and S. Ghagane, “Lesion detection and classification using sematic deep segmentation network,” in Smart Technologies in Data Science and Communication.   Singapore: Springer Singapore, 2021, pp. 321–336.
  22. G. Lemaître, R. Martí, J. Freixenet, J. C. Vilanova, P. M. Walker, and F. Meriaudeau, “Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric mri: a review,” Computers in biology and medicine, vol. 60, pp. 8–31, 2015.
  23. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  24. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  25. R. DiPietro and G. D. Hager, “Chapter 21 - deep learning: Rnns and lstm, handbook of medical image computing and computer assisted intervention,” pp. 503–519, 2020.
  26. S. G. Armato III, H. Huisman, K. Drukker, L. Hadjiiski, J. S. Kirby, N. Petrick, G. Redmond, M. L. Giger, K. Cha, A. Mamonov et al., “Prostatex challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images,” Journal of Medical Imaging, vol. 5, no. 4, pp. 044 501–044 501, 2018.
Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.