Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guardians as You Fall: Active Mode Transition for Safe Falling (2310.04828v1)

Published 7 Oct 2023 in cs.RO

Abstract: Recent advancements in optimal control and reinforcement learning have enabled quadrupedal robots to perform various agile locomotion tasks over diverse terrains. During these agile motions, ensuring the stability and resiliency of the robot is a primary concern to prevent catastrophic falls and mitigate potential damages. Previous methods primarily focus on recovery policies after the robot falls. There is no active safe falling solution to the best of our knowledge. In this paper, we proposed Guardians as You Fall (GYF), a safe falling/tumbling and recovery framework that can actively tumble and recover to stable modes to reduce damage in highly dynamic scenarios. The key idea of GYF is to adaptively traverse different stable modes via active tumbling before the robot shifts to irrecoverable poses. Via comprehensive simulation and real-world experiments, we show that GYF significantly reduces the maximum acceleration and jerk of the robot base compared to the baselines. In particular, GYF reduces the maximum acceleration and jerk by 20%~73% in different scenarios in simulation and real-world experiments. GYF offers a new perspective on safe falling and recovery in locomotion tasks, potentially enabling much more aggressive explorations of existing agile locomotion skills.

Citations (5)

Summary

We haven't generated a summary for this paper yet.