Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CSI: Enhancing the Robustness of 3D Point Cloud Recognition against Corruption (2310.03360v1)

Published 5 Oct 2023 in cs.CV

Abstract: Despite recent advancements in deep neural networks for point cloud recognition, real-world safety-critical applications present challenges due to unavoidable data corruption. Current models often fall short in generalizing to unforeseen distribution shifts. In this study, we harness the inherent set property of point cloud data to introduce a novel critical subset identification (CSI) method, aiming to bolster recognition robustness in the face of data corruption. Our CSI framework integrates two pivotal components: density-aware sampling (DAS) and self-entropy minimization (SEM), which cater to static and dynamic CSI, respectively. DAS ensures efficient robust anchor point sampling by factoring in local density, while SEM is employed during training to accentuate the most salient point-to-point attention. Evaluations reveal that our CSI approach yields error rates of 18.4\% and 16.3\% on ModelNet40-C and PointCloud-C, respectively, marking a notable improvement over state-of-the-art methods by margins of 5.2\% and 4.2\% on the respective benchmarks. Code is available at \href{https://github.com/masterwu2115/CSI/tree/main}{https://github.com/masterwu2115/CSI/tree/main}

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com