Papers
Topics
Authors
Recent
2000 character limit reached

Sim-to-Real Learning for Humanoid Box Loco-Manipulation (2310.03191v1)

Published 4 Oct 2023 in cs.RO

Abstract: In this work we propose a learning-based approach to box loco-manipulation for a humanoid robot. This is a particularly challenging problem due to the need for whole-body coordination in order to lift boxes of varying weight, position, and orientation while maintaining balance. To address this challenge, we present a sim-to-real reinforcement learning approach for training general box pickup and carrying skills for the bipedal robot Digit. Our reward functions are designed to produce the desired interactions with the box while also valuing balance and gait quality. We combine the learned skills into a full system for box loco-manipulation to achieve the task of moving boxes from one table to another with a variety of sizes, weights, and initial configurations. In addition to quantitative simulation results, we demonstrate successful sim-to-real transfer on the humanoid r

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. G. A. Castillo, B. Weng, W. Zhang, and A. Hereid, “Robust feedback motion policy design using reinforcement learning on a 3d digit bipedal robot,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 5136–5143.
  2. V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait: Planning and control of quadrupedal gaits using deep reinforcement learning,” IEEE Robotics and Automation Letters, vol. 5, pp. 3699–3706, 4 2020. [Online]. Available: http://arxiv.org/abs/1909.08399https://ieeexplore.ieee.org/document/9028188/
  3. Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath, “Reinforcement learning for robust parameterized locomotion control of bipedal robots.”   IEEE, 5 2021, pp. 2811–2817. [Online]. Available: https://ieeexplore.ieee.org/document/9560769/
  4. J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning quadrupedal locomotion over challenging terrain,” Science Robotics, vol. 5, p. eabc5986, 10 2020. [Online]. Available: http://robotics.sciencemag.org/content/5/47/eabc5986.abstract
  5. J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of all common bipedal gaits via periodic reward composition,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 7309–7315.
  6. H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar, “Dexterous manipulation with deep reinforcement learning: Efficient, general, and low-cost,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 3651–3657.
  7. C. Wang, Q. Zhang, Q. Tian, S. Li, X. Wang, D. Lane, Y. Petillot, and S. Wang, “Learning mobile manipulation through deep reinforcement learning,” Sensors, vol. 20, p. 939, 2 2020.
  8. C. Sun, J. Orbik, C. M. Devin, B. H. Yang, A. Gupta, G. Berseth, and S. Levine, “Fully autonomous real-world reinforcement learning with applications to mobile manipulation,” in Proceedings of the 5th Conference on Robot Learning, ser. Proceedings of Machine Learning Research, A. Faust, D. Hsu, and G. Neumann, Eds., vol. 164.   PMLR, 08–11 Nov 2022, pp. 308–319. [Online]. Available: https://proceedings.mlr.press/v164/sun22a.html
  9. H. Arisumi, J.-R. Chardonnet, A. Kheddar, and K. Yokoi, “Dynamic lifting motion of humanoid robots.”   IEEE, 4 2007, pp. 2661–2667.
  10. K. Harada, S. Kajita, H. Saito, M. Morisawa, F. Kanehiro, K. Fujiwara, K. Kaneko, and H. Hirukawa, “A humanoid robot carrying a heavy object.”   IEEE, 2007, pp. 1712–1717.
  11. A. Settimi, D. Caporale, P. Kryczka, M. Ferrati, and L. Pallottino, “Motion primitive based random planning for loco-manipulation tasks,” IEEE-RAS International Conference on Humanoid Robots, pp. 1059–1066, 2016.
  12. P. Ferrari, M. Cognetti, and G. Oriolo, “Humanoid whole-body planning for loco-manipulation tasks,” in Proceedings - IEEE International Conference on Robotics and Automation, 2017, pp. 4741–4746.
  13. S. Karumanchi, K. Edelberg, I. Baldwin, J. Nash, J. Reid, C. Bergh, J. Leichty, K. Carpenter, M. Shekels, M. Gildner, D. Newill‐Smith, J. Carlton, J. Koehler, T. Dobreva, M. Frost, P. Hebert, J. Borders, J. Ma, B. Douillard, P. Backes, B. Kennedy, B. Satzinger, C. Lau, K. Byl, K. Shankar, and J. Burdick, “Team robosimian: Semi‐autonomous mobile manipulation at the 2015 darpa robotics challenge finals,” Journal of Field Robotics, vol. 34, pp. 305–332, 3 2017.
  14. K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, K. Yokoi, and H. Hirukawa, “Real-time planning of humanoid robot’s gait for force-controlled manipulation,” IEEE/ASME Transactions on Mechatronics, vol. 12, pp. 53–62, 2 2007.
  15. S. Sato, Y. Kojio, K. Kojima, F. Sugai, Y. Kakiuchi, K. Okada, and M. Inaba, “Drop prevention control for humanoid robots carrying stacked boxes.”   IEEE, 9 2021, pp. 4118–4125.
  16. M. Seo, S. Han, K. Sim, S. H. Bang, C. Gonzalez, L. Sentis, and Y. Zhu, “Deep imitation learning for humanoid loco-manipulation through human teleoperation,” 2023.
  17. J. Liu, H. Sim, C. Li, and F. Chen, “Birp: Learning robot generalized bimanual coordination using relative parameterization method on human demonstration,” 2023.
  18. Y. Ma, F. Farshidian, T. Miki, J. Lee, and M. Hutter, “Combining learning-based locomotion policy with model-based manipulation for legged mobile manipulators,” IEEE Robotics and Automation Letters, vol. 7, pp. 2377–2384, 4 2022.
  19. C. Sun, J. Orbik, C. M. Devin, B. H. Yang, A. Gupta, G. Berseth, and S. Levine, “Fully autonomous real-world reinforcement learning with applications to mobile manipulation,” A. Faust, D. Hsu, and G. Neumann, Eds., vol. 164.   PMLR, 9 2022, pp. 308–319. [Online]. Available: https://proceedings.mlr.press/v164/sun22a.html
  20. Z. Fu, X. Cheng, and D. Pathak, “Deep whole-body control: Learning a unified policy for manipulation and locomotion,” 2022.
  21. E. Arcari, M. V. Minniti, A. Scampicchio, A. Carron, F. Farshidian, M. Hutter, and M. N. Zeilinger, “Bayesian multi-task learning mpc for robotic mobile manipulation,” 11 2022.
  22. Z. Xie, J. Tseng, S. Starke, M. van de Panne, and C. K. Liu, “Hierarchical planning and control for box loco-manipulation,” 6 2023. [Online]. Available: http://arxiv.org/abs/2306.09532
  23. J. Dao, K. Green, H. Duan, A. Fern, and J. Hurst, “Sim-to-real learning for bipedal locomotion under unsensed dynamic loads.”   IEEE, 5 2022, pp. 10 449–10 455.
  24. E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2012, pp. 5026–5033.
  25. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization Algorithms,” jul 2017. [Online]. Available: http://arxiv.org/abs/1707.06347
  26. X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-Real Transfer of Robotic Control with Dynamics Randomization,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, may 2018, pp. 3803–3810. [Online]. Available: https://ieeexplore.ieee.org/document/8460528/
Citations (16)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com