Conley index for multivalued maps on finite topological spaces (2310.03099v2)
Abstract: We develop Conley's theory for multivalued maps on finite topological spaces. More precisely, for discrete-time dynamical systems generated by the iteration of a multivalued map which satisfies appropriate regularity conditions, we establish the notions of isolated invariant sets and index pairs, and use them to introduce a well-defined Conley index. In addition, we verify some of its fundamental properties such as the Wazewski property and continuation.
- P. Alexandrov. Diskrete Räume. Mathematiceskii Sbornik (N.S.), 2:501–518, 1937.
- J. A. Barmak. Algebraic Topology of Finite Topological Spaces and Applications, volume 2032 of Lecture Notes in Mathematics. Springer-Verlag, Berlin – Heidelberg, 2011.
- A Lefschetz fixed point theorem for multivalued maps of finite spaces. Mathematische Zeitschrift, 294(3–4):1477–1497, 2020.
- B. Batko. Weak index pairs and the Conley index for discrete multivalued dynamical systems. part ii: Properties of the index. SIAM Journal on Applied Dynamical Systems, 16(3):1587–1617, 2017.
- B. Batko. The Morse equation in the Conley index theory for discrete multivalued dynamical systems. Journal of Dynamics and Differential Equations, 35(3):2725–2742, SEP 2023.
- Linking combinatorial and classical dynamics: Conley index and Morse decompositions. Foundations of Computational Mathematics, 20(5):967–1012, 2020.
- B. Batko and M. Mrozek. Weak index pairs and the Conley index for discrete multivalued dynamical systems. SIAM Journal on Applied Dynamical Systems, 15(2):1143–1162, 2016.
- U. Bauer and F. Roll. Wrapping cycles in Delaunay complexes: Bridging persistent homology and discrete Morse theory. arXiv e-prints, 2212.02345[math.AT], 2024.
- Combinatorial-topological framework for the analysis of global dynamics. Chaos, 22(4), 2012.
- J. Bush and K. Mischaikow. Coarse dynamics for coarse modeling: An example from population biology. ENTROPY, 16(6):3379–3400, JUN 2014.
- G. Carlsson. Topology and data. Bull. Am. Math. Soc., New Ser., 46(2):255–308, 2009.
- C. Conley. Isolated Invariant Sets and the Morse Index. American Mathematical Society, Providence, R.I., 1978.
- K. Deimling. Multivalued Differential Equations, volume 1 of De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, 1992.
- Persistent homology of Morse decompositions in combinatorial dynamics. SIAM Journal on Applied Dynamical Systems, 18(1):510–530, 2019.
- H. Edelsbrunner and J. L. Harer. Computational topology. American Mathematical Society, Providence, RI, 2010. An introduction.
- R. Engelking. General Topology. Heldermann Verlag, Berlin, 1989.
- R. Forman. Combinatorial vector fields and dynamical systems. Mathematische Zeitschrift, 228(4):629–681, 1998.
- R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134(1):90–145, 1998.
- J. Franks and D. Richeson. Shift equivalence and the conley index. Trans. Amer. Math. Soc., 352(7):3305–3322, 2000.
- L. Górniewicz. Topological Fixed Point Theory of Multivalued Mappings, volume 4 of Topological Fixed Point Theory and Its Applications. Springer, Dordrecht, second edition, 2006.
- A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
- M. Juda. Unsupervised features learning for sampled vector fields. SIAM Journal on Applied Dynamical Systems, 19(4):2720–2736, 2020.
- T. Kaczynski and M. Mrozek. Conley index for discrete multi-valued dynamical systems. Topology and its Applications, 65(1):83–96, 1995.
- Towards a formal tie between combinatorial and classical vector field dynamics. Journal of Computational Dynamics, 3(1):17–50, 2016.
- Lattice structures for attractors I. Journal of Computational Dynamics, 1(2):307–338, 2014.
- Lattice structures for attractors II. Foundations of Computational Mathematics, 16(5):1151–1191, 2016.
- Lattice structures for attractors III. Journal of Dynamics and Differential Equations, 34(3):1729–1768, 2022.
- S. Lefschetz. Algebraic Topology. American Mathematical Society Colloquium Publications, v. 27. American Mathematical Society, New York, 1942.
- Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces. Journal of Applied and Computational Topology, 7(2):139–184, 2023.
- Morse predecomposition of an invariant set. Submitted for publication, 2023.
- M. C. McCord. Singular homology and homotopy groups of finite spaces. Duke Mathematical Journal, 33:465–474, 1966.
- M. Mrozek. The Conley index on compact ANRs is of finite type. Results in Mathematics, 18(3-4):306–313, 1990.
- M. Mrozek. Leray functor and cohomological Conley index for discrete dynamical systems. Transactions of the American Mathematical Society, 318(1):149–178, 1990.
- M. Mrozek. Normal functors and retractors in categories of endomorphisms. Universitatis Iagellonicae. Acta Mathematica, 29:181–198, 1992.
- M. Mrozek. Conley-Morse-Forman theory for combinatorial multivector fields on Lefschetz complexes. Foundations of Computational Mathematics, 17(6):1585–1633, 2017.
- Combinatorial vs. classical dynamics: Recurrence. Communications in Nonlinear Science and Numerical Simulation, 108:Paper No. 106226, 30 pp, 2022.
- M. Mrozek and T. Wanner. Creating semiflows on simplicial complexes from combinatorial vector fields. Journal of Differential Equations, 304:375–434, 2021.
- J. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.
- Dynamical systems, shape theory and the Conley index. Ergodic Theory Dynam. Systems, 8*:375–393, 1988.
- K. Stolot. Homotopy Conley index for discrete multivalued dynamical systems. Topology and its Applications, 153(18):3528–3545, 2006.
- A. Szymczak. The Conley index for discrete semidynamical systems. Topology and its Applications, 66(3):215–240, 1995.
- Rigorous computation in dynamics based on topological methods for multivector fields. J Appl. and Comput. Topology, 2023.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.