Papers
Topics
Authors
Recent
2000 character limit reached

Conley index for multivalued maps on finite topological spaces (2310.03099v2)

Published 4 Oct 2023 in math.DS and math.AT

Abstract: We develop Conley's theory for multivalued maps on finite topological spaces. More precisely, for discrete-time dynamical systems generated by the iteration of a multivalued map which satisfies appropriate regularity conditions, we establish the notions of isolated invariant sets and index pairs, and use them to introduce a well-defined Conley index. In addition, we verify some of its fundamental properties such as the Wazewski property and continuation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. P. Alexandrov. Diskrete Räume. Mathematiceskii Sbornik (N.S.), 2:501–518, 1937.
  2. J. A. Barmak. Algebraic Topology of Finite Topological Spaces and Applications, volume 2032 of Lecture Notes in Mathematics. Springer-Verlag, Berlin – Heidelberg, 2011.
  3. A Lefschetz fixed point theorem for multivalued maps of finite spaces. Mathematische Zeitschrift, 294(3–4):1477–1497, 2020.
  4. B. Batko. Weak index pairs and the Conley index for discrete multivalued dynamical systems. part ii: Properties of the index. SIAM Journal on Applied Dynamical Systems, 16(3):1587–1617, 2017.
  5. B. Batko. The Morse equation in the Conley index theory for discrete multivalued dynamical systems. Journal of Dynamics and Differential Equations, 35(3):2725–2742, SEP 2023.
  6. Linking combinatorial and classical dynamics: Conley index and Morse decompositions. Foundations of Computational Mathematics, 20(5):967–1012, 2020.
  7. B. Batko and M. Mrozek. Weak index pairs and the Conley index for discrete multivalued dynamical systems. SIAM Journal on Applied Dynamical Systems, 15(2):1143–1162, 2016.
  8. U. Bauer and F. Roll. Wrapping cycles in Delaunay complexes: Bridging persistent homology and discrete Morse theory. arXiv e-prints, 2212.02345[math.AT], 2024.
  9. Combinatorial-topological framework for the analysis of global dynamics. Chaos, 22(4), 2012.
  10. J. Bush and K. Mischaikow. Coarse dynamics for coarse modeling: An example from population biology. ENTROPY, 16(6):3379–3400, JUN 2014.
  11. G. Carlsson. Topology and data. Bull. Am. Math. Soc., New Ser., 46(2):255–308, 2009.
  12. C. Conley. Isolated Invariant Sets and the Morse Index. American Mathematical Society, Providence, R.I., 1978.
  13. K. Deimling. Multivalued Differential Equations, volume 1 of De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, 1992.
  14. Persistent homology of Morse decompositions in combinatorial dynamics. SIAM Journal on Applied Dynamical Systems, 18(1):510–530, 2019.
  15. H. Edelsbrunner and J. L. Harer. Computational topology. American Mathematical Society, Providence, RI, 2010. An introduction.
  16. R. Engelking. General Topology. Heldermann Verlag, Berlin, 1989.
  17. R. Forman. Combinatorial vector fields and dynamical systems. Mathematische Zeitschrift, 228(4):629–681, 1998.
  18. R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134(1):90–145, 1998.
  19. J. Franks and D. Richeson. Shift equivalence and the conley index. Trans. Amer. Math. Soc., 352(7):3305–3322, 2000.
  20. L. Górniewicz. Topological Fixed Point Theory of Multivalued Mappings, volume 4 of Topological Fixed Point Theory and Its Applications. Springer, Dordrecht, second edition, 2006.
  21. A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
  22. M. Juda. Unsupervised features learning for sampled vector fields. SIAM Journal on Applied Dynamical Systems, 19(4):2720–2736, 2020.
  23. T. Kaczynski and M. Mrozek. Conley index for discrete multi-valued dynamical systems. Topology and its Applications, 65(1):83–96, 1995.
  24. Towards a formal tie between combinatorial and classical vector field dynamics. Journal of Computational Dynamics, 3(1):17–50, 2016.
  25. Lattice structures for attractors I. Journal of Computational Dynamics, 1(2):307–338, 2014.
  26. Lattice structures for attractors II. Foundations of Computational Mathematics, 16(5):1151–1191, 2016.
  27. Lattice structures for attractors III. Journal of Dynamics and Differential Equations, 34(3):1729–1768, 2022.
  28. S. Lefschetz. Algebraic Topology. American Mathematical Society Colloquium Publications, v. 27. American Mathematical Society, New York, 1942.
  29. Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces. Journal of Applied and Computational Topology, 7(2):139–184, 2023.
  30. Morse predecomposition of an invariant set. Submitted for publication, 2023.
  31. M. C. McCord. Singular homology and homotopy groups of finite spaces. Duke Mathematical Journal, 33:465–474, 1966.
  32. M. Mrozek. The Conley index on compact ANRs is of finite type. Results in Mathematics, 18(3-4):306–313, 1990.
  33. M. Mrozek. Leray functor and cohomological Conley index for discrete dynamical systems. Transactions of the American Mathematical Society, 318(1):149–178, 1990.
  34. M. Mrozek. Normal functors and retractors in categories of endomorphisms. Universitatis Iagellonicae. Acta Mathematica, 29:181–198, 1992.
  35. M. Mrozek. Conley-Morse-Forman theory for combinatorial multivector fields on Lefschetz complexes. Foundations of Computational Mathematics, 17(6):1585–1633, 2017.
  36. Combinatorial vs. classical dynamics: Recurrence. Communications in Nonlinear Science and Numerical Simulation, 108:Paper No. 106226, 30 pp, 2022.
  37. M. Mrozek and T. Wanner. Creating semiflows on simplicial complexes from combinatorial vector fields. Journal of Differential Equations, 304:375–434, 2021.
  38. J. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.
  39. Dynamical systems, shape theory and the Conley index. Ergodic Theory Dynam. Systems, 8*:375–393, 1988.
  40. K. Stolot. Homotopy Conley index for discrete multivalued dynamical systems. Topology and its Applications, 153(18):3528–3545, 2006.
  41. A. Szymczak. The Conley index for discrete semidynamical systems. Topology and its Applications, 66(3):215–240, 1995.
  42. Rigorous computation in dynamics based on topological methods for multivector fields. J Appl. and Comput. Topology, 2023.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.