Papers
Topics
Authors
Recent
2000 character limit reached

Volumetric Semantically Consistent 3D Panoptic Mapping (2309.14737v3)

Published 26 Sep 2023 in cs.RO and cs.CV

Abstract: We introduce an online 2D-to-3D semantic instance mapping algorithm aimed at generating comprehensive, accurate, and efficient semantic 3D maps suitable for autonomous agents in unstructured environments. The proposed approach is based on a Voxel-TSDF representation used in recent algorithms. It introduces novel ways of integrating semantic prediction confidence during mapping, producing semantic and instance-consistent 3D regions. Further improvements are achieved by graph optimization-based semantic labeling and instance refinement. The proposed method achieves accuracy superior to the state of the art on public large-scale datasets, improving on a number of widely used metrics. We also highlight a downfall in the evaluation of recent studies: using the ground truth trajectory as input instead of a SLAM-estimated one substantially affects the accuracy, creating a large gap between the reported results and the actual performance on real-world data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Siegwart, and J. Nieto, “Volumetric Instance-Aware Semantic Mapping and 3D Object Discovery,” IEEE Robotics and Automation Letters (RA-L), July 2019.
  2. X. Wang, S. Liu, X. Shen, C. Shen, and J. Jia, “Associatively Segmenting Instances and Semantics in Point Clouds,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
  3. C. Elich, F. Engelmann, T. Kontogianni, and B. Leibe, “3D Bird’s-eye-view Instance Segmentation,” The German Conference on Pattern Recognition (GCPR), 2019.
  4. J. Lahoud, B. Ghanem, M. Pollefeys, and M. R. Oswald, “3D Instance Segmentation via Multi-Task Metric Learning,” International Conference on Computer Vision (ICCV), 2019.
  5. J. Hou, A. Dai, and M. Nießner, “3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
  6. B. Yang, J. Wang, R. Clark, Q. Hu, S. Wang, A. Markham, and N. Trigoni, “Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds,” Neural Information Processing Systems (NeurIPS), 2019.
  7. S. Chen, J. Fang, Q. Zhang, W. Liu, and X. Wang, “Hierarchical Aggregation for 3D Instance Segmentation,” International Conference on Computer Vision (ICCV), 2021.
  8. F. Engelmann, M. Bokeloh, A. Fathi, B. Leibe, and M. Nießner, “3D-MPA: Multi-Proposal Aggregation for 3D Semantic Instance Segmentation,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  9. L. Han, T. Zheng, L. Xu, and L. Fang, “OccuSeg: Occupancy-aware 3D Instance Segmentation,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  10. L. Jiang, H. Zhao, S. Shi, S. Liu, C.-W. Fu, and J. Jia, “PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  11. T. Vu, K. Kim, T. M. Luu, X. T. Nguyen, and C. D. Yoo, “SoftGroup for 3D Instance Segmentation on Point Clouds,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  12. J. Schult, F. Engelmann, A. Hermans, O. Litany, S. Tang, and B. Leibe, “Mask3d for 3d semantic instance segmentation,” arXiv preprint arXiv:2210.03105, 2022.
  13. J. Sun, C. Qing, J. Tan, and X. Xu, “Superpoint transformer for 3d scene instance segmentation,” arXiv preprint arXiv:2211.15766, 2022.
  14. G. Narita, T. Seno, T. Ishikawa, and Y. Kaji, “Panopticfusion: Online volumetric semantic mapping at the level of stuff and things,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019.
  15. A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollar, “Panoptic segmentation,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.
  16. S.-C. Wu, J. Wald, K. Tateno, N. Navab, and F. Tombari, “Scenegraphfusion: Incremental 3d scene graph prediction from rgb-d sequences,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022.
  17. L. Liu, T. Zheng, Y. Lin, K. Ni, and L. Fang, “Ins-conv: Incremental sparse convolution for online 3d segmentation,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  18. F. Furrer, T. Novkovic, M. Fehr, A. Gawel, M. Grinvald, T. Sattler, R. Siegwart, and J. Nieto, “Incremental object database: Building 3d models from multiple partial observations,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018.
  19. K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” International Conference on Computer Vision (ICCV), Oct 2017.
  20. R. Mascaro, L. Teixeira, and M. Chli, “Volumetric instance-level semantic mapping via multi-view 2d-to-3d label diffusion,” IEEE Robotics and Automation Letters (RA-L), 2022.
  21. M. Han, Z. Zhang, Z. Jiao, X. Xie, Y. Zhu, S.-C. Zhu, and H. Liu, “Reconstructing interactive 3d scenes by panoptic mapping and cad model alignments,” International Conference on Robotics and Automation, 2021.
  22. C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós, “Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam,” IEEE Transactions on Robotics, 2021.
  23. B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar, “Masked-attention mask transformer for universal image segmentation,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  24. Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001.
  25. B.-S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.-F. Yu, and S.-K. Yeung, “Scenenn: A scene meshes dataset with annotations,” International Conference on 3D Vision, 2016.
  26. L. Wang, R. Li, J. Sun, X. Liu, L. Zhao, H. S. Seah, C. K. Quah, and B. Tandianus, “Multi-view fusion-based 3d object detection for robot indoor scene perception,” Sensors, 2019.
  27. W. Li, J. Gu, B. Chen, and J. Han, “Incremental instance-oriented 3d semantic mapping via rgb-d cameras for unknown indoor scene,” Discrete Dynamics in Nature and Society, 2020.
  28. A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor scenes,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
  29. W. Hong, Q. Guo, W. Zhang, J. Chen, and W. Chu, “Lpsnet: A lightweight solution for fast panoptic segmentation,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.