Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Augmented Environment Representations with Complete Object Models (2103.07298v2)

Published 12 Mar 2021 in cs.RO

Abstract: While 2D occupancy maps commonly used in mobile robotics enable safe navigation in indoor environments, in order for robots to understand and interact with their environment and its inhabitants representing 3D geometry and semantic environment information is required. Semantic information is crucial in effective interpretation of the meanings humans attribute to different parts of a space, while 3D geometry is important for safety and high-level understanding. We propose a pipeline that can generate a multi-layer representation of indoor environments for robotic applications. The proposed representation includes 3D metric-semantic layers, a 2D occupancy layer, and an object instance layer where known objects are replaced with an approximate model obtained through a novel model-matching approach. The metric-semantic layer and the object instance layer are combined to form an augmented representation of the environment. Experiments show that the proposed shape matching method outperforms a state-of-the-art deep learning method when tasked to complete unseen parts of objects in the scene. The pipeline performance translates well from simulation to real world as shown by F1-score analysis, with semantic segmentation accuracy using Mask R-CNN acting as the major bottleneck. Finally, we also demonstrate on a real robotic platform how the multi-layer map can be used to improve navigation safety.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Krishnananda Prabhu Sivananda (1 paper)
  2. Francesco Verdoja (23 papers)
  3. Ville Kyrki (102 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.