Rigidity of generalized Thurston's sphere packings on 3-dimensional manifolds with boundary
Abstract: Motivated by Guo-Luo's generalized circle packings on surfaces with boundary \cite{GL2}, we introduce the generalized Thurston's sphere packings on 3-dimensional manifolds with boundary. Then we investigate the rigidity of the generalized Thurston's sphere packings. We prove that the generalized Thurston's sphere packings are locally determined by the combinatorial scalar curvatures. We further prove the infinitesimal rigidity that the generalized Thurston's sphere packings can not be deformed while keeping the combinatorial Ricci curvatures fixed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.