Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$L^p$-improving bounds of maximal functions along planar curves (2309.01992v1)

Published 5 Sep 2023 in math.CA

Abstract: In this paper, we study the $Lp(\mathbb{R}2)$-improving bounds, i.e., $Lp(\mathbb{R}2)\rightarrow Lq(\mathbb{R}2)$ estimates, of the maximal function $M_{\gamma}$ along a plane curve $(t,\gamma(t))$, where $$M_{\gamma}f(x_1,x_2):=\sup_{u\in [1,2]}\left|\int_{0}{1}f(x_1-ut,x_2-u \gamma(t))\,\textrm{d}t\right|,$$ and $\gamma$ is a general plane curve satisfying some suitable smoothness and curvature conditions. We obtain $M_{\gamma} : Lp(\mathbb{R}2)\rightarrow Lq(\mathbb{R}2)$ if $(\frac{1}{p},\frac{1}{q})\in \Delta\cup {(0,0)}$ and $(\frac{1}{p},\frac{1}{q})$ satisfying $1+(1 +\omega)(\frac{1}{q}-\frac{1}{p})>0$, where $\Delta:={(\frac{1}{p},\frac{1}{q}):\ \frac{1}{2p}<\frac{1}{q}\leq \frac{1}{p}, \frac{1}{q}>\frac{3}{p}-1 }$ and $\omega:=\limsup_{t\rightarrow 0{+}}\frac{\ln|\gamma(t)|}{\ln t}$. This result is sharp except for some borderline cases. As Hickman stated in [J. Funct. Anal. 270 (2016), pp. 560--608], this is a very different situation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.