Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Bootstrap Hypothesis Test for High-Dimensional Mean Vectors (2309.01254v1)

Published 3 Sep 2023 in math.ST, stat.ME, and stat.TH

Abstract: This paper is concerned with testing global null hypotheses about population mean vectors of high-dimensional data. Current tests require either strong mixing (independence) conditions on the individual components of the high-dimensional data or high-order moment conditions. In this paper, we propose a novel class of bootstrap hypothesis tests based on $\ell_p$-statistics with $p \in [1, \infty]$ which requires neither of these assumptions. We study asymptotic size, unbiasedness, consistency, and Bahadur slope of these tests. Capitalizing on these theoretical insights, we develop a modified bootstrap test with improved power properties and a self-normalized bootstrap test for elliptically distributed data. We then propose two novel bias correction procedures to improve the accuracy of the bootstrap test in finite samples, which leverage measure concentration and hypercontractivity properties of $\ell_p$-norms in high dimensions. Numerical experiments support our theoretical results in finite samples.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.