Papers
Topics
Authors
Recent
2000 character limit reached

Bootstrapping $\ell_p$-Statistics in High Dimensions

Published 23 Jun 2020 in math.ST, econ.EM, math.PR, and stat.TH | (2006.13099v3)

Abstract: This paper considers a new bootstrap procedure to estimate the distribution of high-dimensional $\ell_p$-statistics, i.e. the $\ell_p$-norms of the sum of $n$ independent $d$-dimensional random vectors with $d \gg n$ and $p \in [1, \infty]$. We provide a non-asymptotic characterization of the sampling distribution of $\ell_p$-statistics based on Gaussian approximation and show that the bootstrap procedure is consistent in the Kolmogorov-Smirnov distance under mild conditions on the covariance structure of the data. As an application of the general theory we propose a bootstrap hypothesis test for simultaneous inference on high-dimensional mean vectors. We establish its asymptotic correctness and consistency under high-dimensional alternatives, and discuss the power of the test as well as the size of associated confidence sets. We illustrate the bootstrap and testing procedure numerically on simulated data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.