Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing for spherical and elliptical symmetry (2004.13151v1)

Published 27 Apr 2020 in math.ST, stat.ME, and stat.TH

Abstract: We construct new testing procedures for spherical and elliptical symmetry based on the characterization that a random vector $X$ with finite mean has a spherical distribution if and only if $\Ex[u\top X | v\top X] = 0$ holds for any two perpendicular vectors $u$ and $v$. Our test is based on the Kolmogorov-Smirnov statistic, and its rejection region is found via the spherically symmetric bootstrap. We show the consistency of the spherically symmetric bootstrap test using a general Donsker theorem which is of some independent interest. For the case of testing for elliptical symmetry, the Kolmogorov-Smirnov statistic has an asymptotic drift term due to the estimated location and scale parameters. Therefore, an additional standardization is required in the bootstrap procedure. In a simulation study, the size and the power properties of our tests are assessed for several distributions and the performance is compared to that of several competing procedures.

Citations (6)

Summary

We haven't generated a summary for this paper yet.