Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

GENDIRECT: a GENeralized DIRECT-type algorithmic framework for derivative-free global optimization (2309.00835v1)

Published 2 Sep 2023 in math.OC

Abstract: Over the past three decades, numerous articles have been published discussing the renowned DIRECT algorithm (DIvididing RECTangles). These articles present innovative ideas to enhance its performance and adapt it to various types of optimization problems. A comprehensive collection of deterministic, derivative-free algorithmic implementations based on the DIRECT framework has recently been introduced as part of the DIRECTGO project. DIRECTGO empowers users to conveniently employ diverse DIRECT-type algorithms, enabling efficient solutions to practical optimization problems. Despite their variations, DIRECT-type algorithms share a common algorithmic structure and typically differ only at certain steps. Therefore, we propose GENDIRECT -- GENeralized DIRECT-type framework that encompasses and unifies DIRECT-type algorithms into a single, generalized framework within this paper. GENDIRECT offers a practical alternative to the creation of yet another ``new'' DIRECT-type algorithm that closely resembles existing ones. Instead, GENDIRECT allows the efficient generation of known or novel DIRECT-type optimization algorithms by assembling different algorithmic components. This approach provides considerably more flexibility compared to both the DIRECTGO toolbox and individual DIRECT-type algorithms. A few hundred thousand DIRECT-type algorithms can be combined using GENDIRECT, facilitating users' easy customization and the addition of new algorithmic components. By modifying specific components of five highly promising DIRECT-type algorithms found in the existing literature using GENDIRECT, the significant potential of GENDIRECT has been demonstrated. The resulting newly developed improved approaches exhibit greater efficiency and enhanced robustness in dealing with problems of varying complexity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube