Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Direct-search methods for decentralized blackbox optimization (2504.04269v1)

Published 5 Apr 2025 in math.OC

Abstract: Derivative-free optimization algorithms are particularly useful for tackling blackbox optimization problems where the objective function arises from complex and expensive procedures that preclude the use of classical gradient-based methods. In contemporary decentralized environments, such functions are defined locally on different computational nodes due to technical or privacy constraints, introducing additional challenges within the optimization process. In this paper, we adapt direct-search methods, a classical technique in derivative-free optimization, to the decentralized setting. In contrast with zeroth-order algorithms, our algorithms rely on positive spanning sets to define suitable search directions, while still possessing global convergence guarantees thanks to carefully chosen stepsizes. Numerical experiments highlight the advantages of direct-search techniques over gradient-approximation-based strategies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.