Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving Anomaly Segmentation with Multi-Granularity Cross-Domain Alignment (2308.08696v2)

Published 16 Aug 2023 in cs.CV, cs.AI, and cs.MM

Abstract: Anomaly segmentation plays a pivotal role in identifying atypical objects in images, crucial for hazard detection in autonomous driving systems. While existing methods demonstrate noteworthy results on synthetic data, they often fail to consider the disparity between synthetic and real-world data domains. Addressing this gap, we introduce the Multi-Granularity Cross-Domain Alignment (MGCDA) framework, tailored to harmonize features across domains at both the scene and individual sample levels. Our contributions are twofold: i) We present the Multi-source Domain Adversarial Training module. This integrates a multi-source adversarial loss coupled with dynamic label smoothing, facilitating the learning of domain-agnostic representations across multiple processing stages. ii) We propose an innovative Cross-domain Anomaly-aware Contrastive Learning methodology.} This method adeptly selects challenging anchor points and images using an anomaly-centric strategy, ensuring precise alignment at the sample level. Extensive evaluations of the Fishyscapes and RoadAnomaly datasets demonstrate MGCDA's superior performance and adaptability. Additionally, its ability to perform parameter-free inference and function with various network architectures highlights its distinctiveness in advancing the frontier of anomaly segmentation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.