Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FeatGeNN: Improving Model Performance for Tabular Data with Correlation-based Feature Extraction (2308.07527v1)

Published 15 Aug 2023 in cs.LG and cs.NE

Abstract: Automated Feature Engineering (AutoFE) has become an important task for any machine learning project, as it can help improve model performance and gain more information for statistical analysis. However, most current approaches for AutoFE rely on manual feature creation or use methods that can generate a large number of features, which can be computationally intensive and lead to overfitting. To address these challenges, we propose a novel convolutional method called FeatGeNN that extracts and creates new features using correlation as a pooling function. Unlike traditional pooling functions like max-pooling, correlation-based pooling considers the linear relationship between the features in the data matrix, making it more suitable for tabular data. We evaluate our method on various benchmark datasets and demonstrate that FeatGeNN outperforms existing AutoFE approaches regarding model performance. Our results suggest that correlation-based pooling can be a promising alternative to max-pooling for AutoFE in tabular data applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.