Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

FeRG-LLM : Feature Engineering by Reason Generation Large Language Models (2503.23371v1)

Published 30 Mar 2025 in cs.CL and cs.AI

Abstract: One of the key tasks in machine learning for tabular data is feature engineering. Although it is vital for improving the performance of models, it demands considerable human expertise and deep domain knowledge, making it labor-intensive endeavor. To address this issue, we propose a novel framework, \textbf{FeRG-LLM} (\textbf{Fe}ature engineering by \textbf{R}eason \textbf{G}eneration \textbf{L}arge \textbf{L}anguage \textbf{M}odels), a LLM designed to automatically perform feature engineering at an 8-billion-parameter scale. We have constructed two-stage conversational dialogues that enable LLMs to analyze machine learning tasks and discovering new features, exhibiting their Chain-of-Thought (CoT) capabilities. We use these dialogues to fine-tune Llama 3.1 8B model and integrate Direct Preference Optimization (DPO) to receive feedback improving quality of new features and the model's performance. Our experiments show that FeRG-LLM performs comparably to or better than Llama 3.1 70B on most datasets, while using fewer resources and achieving reduced inference time. It outperforms other studies in classification tasks and performs well in regression tasks. Moreover, since it does not rely on cloud-hosted LLMs like GPT-4 with extra API costs when generating features, it can be deployed locally, addressing security concerns.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube