Papers
Topics
Authors
Recent
2000 character limit reached

Balanced Face Dataset: Guiding StyleGAN to Generate Labeled Synthetic Face Image Dataset for Underrepresented Group

Published 7 Aug 2023 in cs.CV, cs.AI, and cs.LG | (2308.03495v1)

Abstract: For a machine learning model to generalize effectively to unseen data within a particular problem domain, it is well-understood that the data needs to be of sufficient size and representative of real-world scenarios. Nonetheless, real-world datasets frequently have overrepresented and underrepresented groups. One solution to mitigate bias in machine learning is to leverage a diverse and representative dataset. Training a model on a dataset that covers all demographics is crucial to reducing bias in machine learning. However, collecting and labeling large-scale datasets has been challenging, prompting the use of synthetic data generation and active labeling to decrease the costs of manual labeling. The focus of this study was to generate a robust face image dataset using the StyleGAN model. In order to achieve a balanced distribution of the dataset among different demographic groups, a synthetic dataset was created by controlling the generation process of StyleGaN and annotated for different downstream tasks.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.