Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward responsible face datasets: modeling the distribution of a disentangled latent space for sampling face images from demographic groups (2309.08442v1)

Published 15 Sep 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Recently, it has been exposed that some modern facial recognition systems could discriminate specific demographic groups and may lead to unfair attention with respect to various facial attributes such as gender and origin. The main reason are the biases inside datasets, unbalanced demographics, used to train theses models. Unfortunately, collecting a large-scale balanced dataset with respect to various demographics is impracticable. In this paper, we investigate as an alternative the generation of a balanced and possibly bias-free synthetic dataset that could be used to train, to regularize or to evaluate deep learning-based facial recognition models. We propose to use a simple method for modeling and sampling a disentangled projection of a StyleGAN latent space to generate any combination of demographic groups (e.g. $hispanic-female$). Our experiments show that we can synthesis any combination of demographic groups effectively and the identities are different from the original training dataset. We also released the source code.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Parsa Rahimi (10 papers)
  2. Christophe Ecabert (6 papers)
  3. Sebastien Marcel (77 papers)
Citations (5)