Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functional Continuous Uncertainty Principle (2308.00312v1)

Published 1 Aug 2023 in math.FA

Abstract: Let $(\Omega, \mu)$, $(\Delta, \nu)$ be measure spaces. Let $({f_\alpha}{\alpha\in \Omega}, {\tau\alpha}{\alpha\in \Omega})$ and $({g\beta}{\beta\in \Delta}, {\omega\beta}{\beta\in \Delta})$ be continuous p-Schauder frames for a Banach space $\mathcal{X}$. Then for every $x \in \mathcal{X}\setminus{0}$, we show that \begin{align} (1) \quad \quad \quad \quad \mu(\operatorname{supp}(\theta_f x))\frac{1}{p} \nu(\operatorname{supp}(\theta_g x))\frac{1}{q} \geq \frac{1}{\displaystyle\sup{\alpha \in \Omega, \beta \in \Delta}|f_\alpha(\omega_\beta)|}, \quad \nu(\operatorname{supp}(\theta_g x))\frac{1}{p} \mu(\operatorname{supp}(\theta_f x))\frac{1}{q}\geq \frac{1}{\displaystyle\sup_{\alpha \in \Omega , \beta \in \Delta}|g_\beta(\tau_\alpha)|}. \end{align} where \begin{align*} &\theta_f: \mathcal{X} \ni x \mapsto \theta_fx \in \mathcal{L}p(\Omega, \mu); \quad \theta_fx: \Omega \ni \alpha \mapsto (\theta_fx) (\alpha):= f_\alpha (x) \in \mathbb{K}, &\theta_g: \mathcal{X} \ni x \mapsto \theta_gx \in \mathcal{L}p(\Delta, \nu); \quad \theta_gx: \Delta \ni \beta \mapsto (\theta_gx) (\beta):= g_\beta (x) \in \mathbb{K} \end{align*} and $q$ is the conjugate index of $p$. We call Inequality (1) as \textbf{Functional Continuous Uncertainty Principle}. It improves the Functional Donoho-Stark-Elad-Bruckstein-Ricaud-Torr\'{e}sani Uncertainty Principle obtained by K. Mahesh Krishna in [arXiv:2304.03324v1 [math.FA], 5 April 2023]. It also answers a question asked by Prof. Philip B. Stark to the author. Based on Donoho-Elad Sparsity Theorem, we formulate Measure Minimization Conjecture.

Citations (4)

Summary

We haven't generated a summary for this paper yet.