Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Joint Batching and Scheduling for High-Throughput Multiuser Edge AI with Asynchronous Task Arrivals (2307.14350v1)

Published 15 Jul 2023 in eess.SP and math.OC

Abstract: In this paper, we study joint batching and (task) scheduling to maximise the throughput (i.e., the number of completed tasks) under the practical assumptions of heterogeneous task arrivals and deadlines. The design aims to optimise the number of batches, their starting time instants, and the task-batch association that determines batch sizes. The joint optimisation problem is complex due to multiple coupled variables as mentioned and numerous constraints including heterogeneous tasks arrivals and deadlines, the causality requirements on multi-task execution, and limited radio resources. Underpinning the problem is a basic tradeoff between the size of batch and waiting time for tasks in the batch to be uploaded and executed. Our approach of solving the formulated mixed-integer problem is to transform it into a convex problem via integer relaxation method and $\ell_0$-norm approximation. This results in an efficient alternating optimization algorithm for finding a close-to-optimal solution. In addition, we also design the optimal algorithm from leveraging spectrum holes, which are caused by fixed bandwidth allocation to devices and their asynchronized multi-batch task execution, to admit unscheduled tasks so as to further enhance throughput. Simulation results demonstrate that the proposed framework of joint batching and resource allocation can substantially enhance the throughput of multiuser edge-AI as opposed to a number of simpler benchmarking schemes, e.g., equal-bandwidth allocation, greedy batching and single-batch execution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.