Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention-Enhanced Co-Interactive Fusion Network (AECIF-Net) for Automated Structural Condition Assessment in Visual Inspection (2307.07643v4)

Published 14 Jul 2023 in cs.CV

Abstract: Efficiently monitoring the condition of civil infrastructure requires automating the structural condition assessment in visual inspection. This paper proposes an Attention-Enhanced Co-Interactive Fusion Network (AECIF-Net) for automatic structural condition assessment in visual bridge inspection. AECIF-Net can simultaneously parse structural elements and segment surface defects on the elements in inspection images. It integrates two task-specific relearning subnets to extract task-specific features from an overall feature embedding. A co-interactive feature fusion module further captures the spatial correlation and facilitates information sharing between tasks. Experimental results demonstrate that the proposed AECIF-Net outperforms the current state-of-the-art approaches, achieving promising performance with 92.11% mIoU for element segmentation and 87.16% mIoU for corrosion segmentation on the test set of the new benchmark dataset Steel Bridge Condition Inspection Visual (SBCIV). An ablation study verifies the merits of the designs for AECIF-Net, and a case study demonstrates its capability to automate structural condition assessment.

Citations (5)

Summary

We haven't generated a summary for this paper yet.