A generalized mass-to-horizon relation: a new global approach to entropic cosmologies and its connection to $Λ$CDM (2307.06239v2)
Abstract: In this letter, we propose a new generalized mass-to-horizon relation to be used in the context of entropic cosmologies and holographic principle scenarios. We show that a general scaling of the mass with the Universe horizon as $M=\gamma \frac{c2}{G}Ln$ leads to a new generalized entropy $S_n = \gamma \frac{n}{1+n}\frac{2 \pi\,k_B\,c3}{G\,\hbar} L{n+1}$ from which we can recover many of the recently proposed forms of entropies at cosmological and black hole scales and also establish a thermodynamically consistent relation between each of them and Hawking temperature. We analyse the consequences of introducing this new mass-to-horizon relation on cosmological scales by comparing the corresponding modified Friedmann, acceleration, and continuity equations to cosmological data. We find that when $n=3$, the entropic cosmology model is fully and totally equivalent to the standard $\Lambda$CDM model, thus providing a new fundamental support for the origin and the nature of the cosmological constant. In general, if $\log \gamma < -3$, and irrespective of the value of $n$, we find a very good agreement with the data comparable with $\Lambda$CDM from which, in Bayesian terms, our models are indistinguishable.
- J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
- S. Hawking, Nature 248, 30 (1974).
- G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738 (1977a).
- T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995), arXiv:gr-qc/9504004 .
- E. P. Verlinde, JHEP 04, 029 (2011), arXiv:1001.0785 [hep-th] .
- T. Padmanabhan, Class. Quant. Grav. 21, 4485 (2004), arXiv:gr-qc/0308070 .
- R.-G. Cai and S. P. Kim, JHEP 02, 050 (2005), arXiv:hep-th/0501055 .
- G. ’t Hooft, Conf. Proc. C 930308, 284 (1993), arXiv:gr-qc/9310026 .
- L. Susskind, J. Math. Phys. 36, 6377 (1995), arXiv:hep-th/9409089 .
- J. W. York, Jr., Phys. Rev. Lett. 28, 1082 (1972).
- G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752 (1977b).
- S. Basilakos and J. Sola, Phys. Rev. D 90, 023008 (2014), arXiv:1402.6594 [astro-ph.CO] .
- H. Gohar and V. Salzano, (2023), arXiv:2307.01768 [gr-qc] .
- Y. Gong and A. Wang, Phys. Rev. Lett. 99, 211301 (2007), arXiv:0704.0793 [hep-th] .
- C. Tsallis and L. J. Cirto, Eur. Phys. J. C 73, 2487 (2013), arXiv:1202.2154 [cond-mat.stat-mech] .
- C. Tsallis, Entropy 22, 17 (2019).
- J. D. Barrow, Physics Letters B 808, 135643 (2020).
- D. J. Zamora and C. Tsallis, Eur. Phys. J. C 82, 689 (2022a), arXiv:2201.03385 [gr-qc] .
- D. J. Zamora and C. Tsallis, Phys. Lett. B 827, 136967 (2022b), arXiv:2201.01835 [gr-qc] .
- N. Komatsu and S. Kimura, Phys. Rev. D 89, 123501 (2014), arXiv:1402.3755 [astro-ph.CO] .
- N. Komatsu and S. Kimura, Phys. Rev. D 88, 083534 (2013), arXiv:1307.5949 [astro-ph.CO] .
- D. Scolnic et al., Astrophys. J. 938, 113 (2022), arXiv:2112.03863 [astro-ph.CO] .
- E. R. Peterson et al., Astrophys. J. 938, 112 (2022), arXiv:2110.03487 [astro-ph.CO] .
- D. Brout et al., Astrophys. J. 938, 110 (2022), arXiv:2202.04077 [astro-ph.CO] .
- R. Jimenez and A. Loeb, Astrophys. J. 573, 37 (2002), arXiv:astro-ph/0106145 .
- M. Moresco et al., Living Rev. Rel. 25, 6 (2022), arXiv:2201.07241 [astro-ph.CO] .
- M. Moresco et al., JCAP 08, 006 (2012b), arXiv:1201.3609 [astro-ph.CO] .
- M. Moresco, Mon. Not. Roy. Astron. Soc. 450, L16 (2015), arXiv:1503.01116 [astro-ph.CO] .
- M. Moresco and F. Marulli, Mon. Not. Roy. Astron. Soc. 471, L82 (2017), arXiv:1705.07903 [astro-ph.CO] .
- J. Liu and H. Wei, Gen. Rel. Grav. 47 (2015), 10.1007/s10714-015-1986-1, arXiv:1410.3960 .
- A. Conley et al. (SNLS), Astrophys. J. Suppl. 192, 1 (2011), arXiv:1104.1443 [astro-ph.CO] .
- Y. Wang and P. Mukherjee, Phys. Rev. D 76, 103533 (2007), arXiv:astro-ph/0703780 .
- N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- W. Hu and N. Sugiyama, Astrophys. J. 471, 542 (1996), arXiv:astro-ph/9510117 .
- E. Komatsu et al. (WMAP), Astrophys. J. Suppl. 180, 330 (2009), arXiv:0803.0547 [astro-ph] .
- C. Blake et al., Mon. Not. Roy. Astron. Soc. 425, 405 (2012), arXiv:1204.3674 [astro-ph.CO] .
- A. Tamone et al., Mon. Not. Roy. Astron. Soc. 499, 5527 (2020), arXiv:2007.09009 [astro-ph.CO] .
- A. de Mattia et al., Mon. Not. Roy. Astron. Soc. 501, 5616 (2021), arXiv:2007.09008 [astro-ph.CO] .
- S. Alam et al. (BOSS), Mon. Not. Roy. Astron. Soc. 470, 2617 (2017), arXiv:1607.03155 [astro-ph.CO] .
- H. Gil-Marin et al., Mon. Not. Roy. Astron. Soc. 498, 2492 (2020), arXiv:2007.08994 [astro-ph.CO] .
- J. E. Bautista et al., Mon. Not. Roy. Astron. Soc. 500, 736 (2020), arXiv:2007.08993 [astro-ph.CO] .
- S. Nadathur et al., Mon. Not. Roy. Astron. Soc. 499, 4140 (2020), arXiv:2008.06060 [astro-ph.CO] .
- H. du Mas des Bourboux et al., Astrophys. J. 901, 153 (2020), arXiv:2007.08995 [astro-ph.CO] .
- J. Hou et al., Mon. Not. Roy. Astron. Soc. 500, 1201 (2020), arXiv:2007.08998 [astro-ph.CO] .
- R. Neveux et al., Mon. Not. Roy. Astron. Soc. 499, 210 (2020), arXiv:2007.08999 [astro-ph.CO] .
- D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605 (1998), arXiv:astro-ph/9709112 [astro-ph] .
- G.-B. Zhao et al., Mon. Not. Roy. Astron. Soc. 482, 3497 (2019), arXiv:1801.03043 [astro-ph.CO] .
- R. E. Kass and A. E. Raftery, Journal of the American Statistical Association 90, 773 (1995), https://www.tandfonline.com/doi/pdf/10.1080/01621459.1995.10476572 .
- H. Jeffreys, Theory of Probability (Oxford, England: Clarendon Press, 1939).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.