Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A model local interpretation routine for deep learning based radio galaxy classification (2307.03453v1)

Published 7 Jul 2023 in astro-ph.IM and astro-ph.GA

Abstract: Radio galaxy morphological classification is one of the critical steps when producing source catalogues for large-scale radio continuum surveys. While many recent studies attempted to classify source radio morphology from survey image data using deep learning algorithms (i.e., Convolutional Neural Networks), they concentrated on model robustness most time. It is unclear whether a model similarly makes predictions as radio astronomers did. In this work, we used Local Interpretable Model-agnostic Explanation (LIME), an state-of-the-art eXplainable Artificial Intelligence (XAI) technique to explain model prediction behaviour and thus examine the hypothesis in a proof-of-concept manner. In what follows, we describe how \textbf{LIME} generally works and early results about how it helped explain predictions of a radio galaxy classification model using this technique.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.