Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Radio Galaxy Zoo: ClaRAN - A Deep Learning Classifier for Radio Morphologies (1805.12008v2)

Published 30 May 2018 in astro-ph.IM

Abstract: The upcoming next-generation large area radio continuum surveys can expect tens of millions of radio sources, rendering the traditional method for radio morphology classification through visual inspection unfeasible. We present ClaRAN - Classifying Radio sources Automatically with Neural networks - a proof-of-concept radio source morphology classifier based upon the Faster Region-based Convolutional Neutral Networks (Faster R-CNN) method. Specifically, we train and test ClaRAN on the FIRST and WISE images from the Radio Galaxy Zoo Data Release 1 catalogue. ClaRAN provides end users with automated identification of radio source morphology classifications from a simple input of a radio image and a counterpart infrared image of the same region. ClaRAN is the first open-source, end-to-end radio source morphology classifier that is capable of locating and associating discrete and extended components of radio sources in a fast (< 200 milliseconds per image) and accurate (>= 90 %) fashion. Future work will improve ClaRAN's relatively lower success rates in dealing with multi-source fields and will enable ClaRAN to identify sources on much larger fields without loss in classification accuracy.

Citations (62)

Summary

We haven't generated a summary for this paper yet.