Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

UnLoc: A Universal Localization Method for Autonomous Vehicles using LiDAR, Radar and/or Camera Input (2307.00741v1)

Published 3 Jul 2023 in cs.RO, cs.AI, cs.CV, and cs.LG

Abstract: Localization is a fundamental task in robotics for autonomous navigation. Existing localization methods rely on a single input data modality or train several computational models to process different modalities. This leads to stringent computational requirements and sub-optimal results that fail to capitalize on the complementary information in other data streams. This paper proposes UnLoc, a novel unified neural modeling approach for localization with multi-sensor input in all weather conditions. Our multi-stream network can handle LiDAR, Camera and RADAR inputs for localization on demand, i.e., it can work with one or more input sensors, making it robust to sensor failure. UnLoc uses 3D sparse convolutions and cylindrical partitioning of the space to process LiDAR frames and implements ResNet blocks with a slot attention-based feature filtering module for the Radar and image modalities. We introduce a unique learnable modality encoding scheme to distinguish between the input sensor data. Our method is extensively evaluated on Oxford Radar RobotCar, ApolloSouthBay and Perth-WA datasets. The results ascertain the efficacy of our technique.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.” in Robotics: science and systems, vol. 2, no. 4.   Seattle, WA, 2009, p. 435.
  2. T. Stoyanov, M. Magnusson, H. Andreasson, and A. J. Lilienthal, “Fast and accurate scan registration through minimization of the distance between compact 3d ndt representations,” The International Journal of Robotics Research, vol. 31, no. 12, pp. 1377–1393, 2012.
  3. M. Ibrahim, N. Akhtar, S. Anwar, M. Wise, and A. Mian, “Slice transformer and self-supervised learning for 6dof localization in 3d point cloud maps,” arXiv preprint arXiv:2301.08957, 2023.
  4. W. Wang, B. Wang, P. Zhao, C. Chen, R. Clark, B. Yang, A. Markham, and N. Trigoni, “Pointloc: Deep pose regressor for lidar point cloud localization,” IEEE Sensors Journal, vol. 22, no. 1, pp. 959–968, 2021.
  5. A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional network for real-time 6-dof camera relocalization,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 2938–2946.
  6. A. Kendall and R. Cipolla, “Modelling uncertainty in deep learning for camera relocalization,” in 2016 IEEE international conference on Robotics and Automation (ICRA).   IEEE, 2016, pp. 4762–4769.
  7. S. H. Cen and P. Newman, “Precise ego-motion estimation with millimeter-wave radar under diverse and challenging conditions,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 6045–6052.
  8. W. Wang, P. P. de Gusmao, B. Yang, A. Markham, and N. Trigoni, “Radarloc: Learning to relocalize in fmcw radar,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 5809–5815.
  9. D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner, “The oxford radar robotcar dataset: A radar extension to the oxford robotcar dataset,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, 2020. [Online]. Available: https://arxiv.org/abs/1909.01300
  10. W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song, “L3-net: Towards learning based lidar localization for autonomous driving,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 6389–6398.
  11. M. Elhousni and X. Huang, “A survey on 3d lidar localization for autonomous vehicles,” in 2020 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2020, pp. 1879–1884.
  12. X. Gao, Q. Wang, H. Gu, F. Zhang, G. Peng, Y. Si, and X. Li, “Fully automatic large-scale point cloud mapping for low-speed self-driving vehicles in unstructured environments,” in 2021 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2021, pp. 881–888.
  13. D. Kovalenko, M. Korobkin, and A. Minin, “Sensor aware lidar odometry,” in 2019 European Conference on Mobile Robots (ECMR).   IEEE, 2019, pp. 1–6.
  14. J. Nubert, S. Khattak, and M. Hutter, “Self-supervised learning of lidar odometry for robotic applications,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 9601–9607.
  15. R. Dubé, A. Cramariuc, D. Dugas, J. Nieto, R. Siegwart, and C. Cadena, “Segmap: 3d segment mapping using data-driven descriptors,” arXiv preprint arXiv:1804.09557, 2018.
  16. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint arXiv:1706.03762, 2017.
  17. S. Brahmbhatt, J. Gu, K. Kim, J. Hays, and J. Kautz, “Geometry-aware learning of maps for camera localization,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 2616–2625.
  18. F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, and D. Cremers, “Image-based localization using lstms for structured feature correlation,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 627–637.
  19. M. Ding, Z. Wang, J. Sun, J. Shi, and P. Luo, “Camnet: Coarse-to-fine retrieval for camera re-localization,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2871–2880.
  20. V. Balntas, S. Li, and V. Prisacariu, “Relocnet: Continuous metric learning relocalisation using neural nets,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 751–767.
  21. Z. Laskar, I. Melekhov, S. Kalia, and J. Kannala, “Camera relocalization by computing pairwise relative poses using convolutional neural network,” in Proceedings of the IEEE International Conference on Computer Vision Workshops, 2017, pp. 929–938.
  22. D. Barnes, R. Weston, and I. Posner, “Masking by moving: Learning distraction-free radar odometry from pose information,” arXiv preprint arXiv:1909.03752, 2019.
  23. D. Barnes and I. Posner, “Under the radar: Learning to predict robust keypoints for odometry estimation and metric localisation in radar,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 9484–9490.
  24. X. Zhu, H. Zhou, T. Wang, F. Hong, Y. Ma, W. Li, H. Li, and D. Lin, “Cylindrical and asymmetrical 3d convolution networks for lidar segmentation,” arXiv preprint arXiv:2011.10033, 2020.
  25. B. Wang, C. Chen, C. X. Lu, P. Zhao, N. Trigoni, and A. Markham, “Atloc: Attention guided camera localization,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 06, 2020, pp. 10 393–10 401.
  26. Z. Huang, Y. Xu, J. Shi, X. Zhou, H. Bao, and G. Zhang, “Prior guided dropout for robust visual localization in dynamic environments,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2791–2800.
  27. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  28. F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Dosovitskiy, and T. Kipf, “Object-centric learning with slot attention,” Advances in Neural Information Processing Systems, vol. 33, pp. 11 525–11 538, 2020.
  29. Z. Hong, Y. Petillot, and S. Wang, “Radarslam: Radar based large-scale slam in all weathers,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 5164–5170.
  30. Y. Wang and J. M. Solomon, “Deep closest point: Learning representations for point cloud registration,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 3523–3532.
  31. M. A. Uy and G. H. Lee, “Pointnetvlad: Deep point cloud based retrieval for large-scale place recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4470–4479.
  32. W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year, 1000km: The Oxford RobotCar Dataset,” The International Journal of Robotics Research (IJRR), vol. 36, no. 1, pp. 3–15, 2017. [Online]. Available: http://dx.doi.org/10.1177/0278364916679498
  33. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
  34. J. Levinson and S. Thrun, “Robust vehicle localization in urban environments using probabilistic maps,” in 2010 IEEE international conference on robotics and automation.   IEEE, 2010, pp. 4372–4378.
  35. G. Wan, X. Yang, R. Cai, H. Li, Y. Zhou, H. Wang, and S. Song, “Robust and precise vehicle localization based on multi-sensor fusion in diverse city scenes,” in 2018 IEEE international conference on robotics and automation (ICRA).   IEEE, 2018, pp. 4670–4677.
  36. W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song, “L3-net: Towards learning based lidar localization for autonomous driving,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 6389–6398.
  37. M. Ibrahim, N. Akhtar, S. Anwar, M. Wise, and A. Mian, “Perth-wa localization dataset in 3d point cloud maps,” 2023. [Online]. Available: https://dx.doi.org/10.21227/s2p2-2e66

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.