Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RaLF: Flow-based Global and Metric Radar Localization in LiDAR Maps (2309.09875v2)

Published 18 Sep 2023 in cs.RO and cs.CV

Abstract: Localization is paramount for autonomous robots. While camera and LiDAR-based approaches have been extensively investigated, they are affected by adverse illumination and weather conditions. Therefore, radar sensors have recently gained attention due to their intrinsic robustness to such conditions. In this paper, we propose RaLF, a novel deep neural network-based approach for localizing radar scans in a LiDAR map of the environment, by jointly learning to address both place recognition and metric localization. RaLF is composed of radar and LiDAR feature encoders, a place recognition head that generates global descriptors, and a metric localization head that predicts the 3-DoF transformation between the radar scan and the map. We tackle the place recognition task by learning a shared embedding space between the two modalities via cross-modal metric learning. Additionally, we perform metric localization by predicting pixel-level flow vectors that align the query radar scan with the LiDAR map. We extensively evaluate our approach on multiple real-world driving datasets and show that RaLF achieves state-of-the-art performance for both place recognition and metric localization. Moreover, we demonstrate that our approach can effectively generalize to different cities and sensor setups than the ones used during training. We make the code and trained models publicly available at http://ralf.cs.uni-freiburg.de.

Citations (4)

Summary

We haven't generated a summary for this paper yet.