Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
13 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Adaptive reinforcement learning of multi-agent ethically-aligned behaviours: the QSOM and QDSOM algorithms (2307.00552v1)

Published 2 Jul 2023 in cs.LG, cs.AI, cs.CY, and cs.MA

Abstract: The numerous deployed Artificial Intelligence systems need to be aligned with our ethical considerations. However, such ethical considerations might change as time passes: our society is not fixed, and our social mores evolve. This makes it difficult for these AI systems; in the Machine Ethics field especially, it has remained an under-studied challenge. In this paper, we present two algorithms, named QSOM and QDSOM, which are able to adapt to changes in the environment, and especially in the reward function, which represents the ethical considerations that we want these systems to be aligned with. They associate the well-known Q-Table to (Dynamic) Self-Organizing Maps to handle the continuous and multi-dimensional state and action spaces. We evaluate them on a use-case of multi-agent energy repartition within a small Smart Grid neighborhood, and prove their ability to adapt, and their higher performance compared to baseline Reinforcement Learning algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.