Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Autoregressive with Slack Time Series Model for Forecasting a Partially-Observed Dynamical Time Series (2306.16593v2)

Published 28 Jun 2023 in stat.ME, cs.LG, and stat.ML

Abstract: This study delves into the domain of dynamical systems, specifically the forecasting of dynamical time series defined through an evolution function. Traditional approaches in this area predict the future behavior of dynamical systems by inferring the evolution function. However, these methods may confront obstacles due to the presence of missing variables, which are usually attributed to challenges in measurement and a partial understanding of the system of interest. To overcome this obstacle, we introduce the autoregressive with slack time series (ARS) model, that simultaneously estimates the evolution function and imputes missing variables as a slack time series. Assuming time-invariance and linearity in the (underlying) entire dynamical time series, our experiments demonstrate the ARS model's capability to forecast future time series. From a theoretical perspective, we prove that a 2-dimensional time-invariant and linear system can be reconstructed by utilizing observations from a single, partially observed dimension of the system.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 35 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube