Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting dynamical system evolution with residual neural networks (1910.05233v1)

Published 11 Oct 2019 in physics.comp-ph, cs.LG, and math.DS

Abstract: Forecasting time series and time-dependent data is a common problem in many applications. One typical example is solving ordinary differential equation (ODE) systems $\dot{x}=F(x)$. Oftentimes the right hand side function $F(x)$ is not known explicitly and the ODE system is described by solution samples taken at some time points. Hence, ODE solvers cannot be used. In this paper, a data-driven approach to learning the evolution of dynamical systems is considered. We show how by training neural networks with ResNet-like architecture on the solution samples, models can be developed to predict the ODE system solution further in time. By evaluating the proposed approaches on three test ODE systems, we demonstrate that the neural network models are able to reproduce the main dynamics of the systems qualitatively well. Moreover, the predicted solution remains stable for much longer times than for other currently known models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.