Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 21 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

One-class systems seamlessly fit in the forward-forward algorithm (2306.15188v1)

Published 27 Jun 2023 in cs.LG and cs.AI

Abstract: The forward-forward algorithm presents a new method of training neural networks by updating weights during an inference, performing parameter updates for each layer individually. This immediately reduces memory requirements during training and may lead to many more benefits, like seamless online training. This method relies on a loss ("goodness") function that can be evaluated on the activations of each layer, of which can have a varied parameter size, depending on the hyperparamaterization of the network. In the seminal paper, a goodness function was proposed to fill this need; however, if placed in a one-class problem context, one need not pioneer a new loss because these functions can innately handle dynamic network sizes. In this paper, we investigate the performance of deep one-class objective functions when trained in a forward-forward fashion. The code is available at \url{https://github.com/MichaelHopwood/ForwardForwardOneclass}.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.