Dual Induction CLT for High-dimensional m-dependent Data (2306.14299v2)
Abstract: We derive novel and sharp high-dimensional Berry--Esseen bounds for the sum of $m$-dependent random vectors over the class of hyper-rectangles exhibiting only a poly-logarithmic dependence in the dimension. Our results hold under minimal assumptions, such as non-degenerate covariances and finite third moments, and yield a sample complexity of order $\sqrt{m/n}$, aside from logarithmic terms, matching the optimal rates established in the univariate case. When specialized to the sums of independent non-degenerate random vectors, we obtain sharp rates under the weakest possible conditions. On the technical side, we develop an inductive relationship between anti-concentration inequalities and Berry--Esseen bounds, inspired by the classical Lindeberg swapping method and the concentration inequality approach for dependent data, that may be of independent interest.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.