Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Central Limit Theorem and Bootstrap Approximation in High Dimensions: Near $1/\sqrt{n}$ Rates via Implicit Smoothing (2009.06004v2)

Published 13 Sep 2020 in math.ST, math.PR, and stat.TH

Abstract: Non-asymptotic bounds for Gaussian and bootstrap approximation have recently attracted significant interest in high-dimensional statistics. This paper studies Berry-Esseen bounds for such approximations with respect to the multivariate Kolmogorov distance, in the context of a sum of $n$ random vectors that are $p$-dimensional and i.i.d. Up to now, a growing line of work has established bounds with mild logarithmic dependence on $p$. However, the problem of developing corresponding bounds with near $n{-1/2}$ dependence on $n$ has remained largely unresolved. Within the setting of random vectors that have sub-Gaussian or sub-exponential entries, this paper establishes bounds with near $n{-1/2}$ dependence, for both Gaussian and bootstrap approximation. In addition, the proofs are considerably distinct from other recent approaches and make use of an "implicit smoothing" operation in the Lindeberg interpolation.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube