Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unusual ergodic and chaotic properties of trapped hard rods

Published 20 Jun 2023 in cond-mat.stat-mech | (2306.11713v1)

Abstract: We investigate ergodicity, chaos and thermalization for a one-dimensional classical gas of hard rods confined to an external quadratic or quartic trap, which breaks microscopic integrability. To quantify the strength of chaos in this system, we compute its maximal Lyapunov exponent numerically. The approach to thermal equilibrium is studied by considering the time evolution of particle position and velocity distributions and comparing the late-time profiles with the Gibbs state. Remarkably, we find that quadratically trapped hard rods are highly non-ergodic and do not resemble a Gibbs state even at extremely long times, despite compelling evidence of chaos for four or more rods. On the other hand, our numerical results reveal that hard rods in a quartic trap exhibit both chaos and thermalization, and equilibrate to a Gibbs state as expected for a nonintegrable many-body system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. J. Ford, The fermi-pasta-ulam problem: paradox turns discovery, Physics Reports 213, 271 (1992).
  2. G. Berman and F. Izrailev, The Fermi–Pasta–Ulam problem: fifty years of progress, Chaos: An Interdisciplinary Journal of Nonlinear Science 15, 015104 (2005).
  3. T. Dauxois, M. Peyrard, and S. Ruffo, The Fermi–Pasta–Ulam ‘numerical experiment’: history and pedagogical perspectives, European Journal of Physics 26, S3 (2005).
  4. G. Gallavotti, The Fermi-Pasta-Ulam problem: a status report, Vol. 728 (Springer, 2007).
  5. N. J. Zabusky and M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Physical review letters 15, 240 (1965).
  6. G. Benettin, H. Christodoulidi, and A. Ponno, The Fermi-Pasta-Ulam problem and its underlying integrable dynamics, Journal of Statistical Physics 152, 195 (2013).
  7. T. Goldfriend and J. Kurchan, Equilibration of quasi-integrable systems, Phys. Rev. E 99, 022146 (2019).
  8. A. Henrici and T. Kappeler, Results on normal forms for FPU chains, Communications in mathematical physics 278, 145 (2008).
  9. F. Israiljev and B. V. Chirikov, The statistical properties of a non-linear string, Tech. Rep. (SCAN-9908053, 1965).
  10. S. Flach and A. V. Gorbach, Discrete breathers—advances in theory and applications, Physics Reports 467, 1 (2008).
  11. J. DeLuca, A. J. Lichtenberg, and S. Ruffo, Energy transitions and time scales to equipartition in the Fermi-Pasta-Ulam oscillator chain, Physical Review E 51, 2877 (1995).
  12. S. Ganapa, A. Apte, and A. Dhar, Thermalization of Local Observables in the α𝛼\alphaitalic_α-FPUT Chain, J. Stat. Phys. 180, 1010 (2020).
  13. T. Kinoshita, T. Wenger, and D. S. Weiss, A quantum Newton’s cradle, Nature 440, 900 (2006).
  14. O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Emergent hydrodynamics in integrable quantum systems out of equilibrium, Physical Review X 6, 041065 (2016).
  15. B. Doyon and T. Yoshimura, A note on generalized hydrodynamics: inhomogeneous fields and other concepts, SciPost Physics 2, 014 (2017).
  16. X. Cao, V. B. Bulchandani, and J. E. Moore, Incomplete thermalization from trap-induced integrability breaking: Lessons from classical hard rods, Phys. Rev. Lett. 120, 164101 (2018).
  17. J. De Nardis, D. Bernard, and B. Doyon, Diffusion in generalized hydrodynamics and quasiparticle scattering, SciPost Physics 6, 049 (2019).
  18. G. Benettin, L. Galgani, and J.-M. Strelcyn, Kolmogorov entropy and numerical experiments, Phys. Rev. A 14, 2338 (1976).
  19. Z. Dong, R. Moessner, and M. Haque, Classical dynamics of harmonically trapped interacting particles, Journal of Statistical Mechanics: Theory and Experiment 2018, 063106 (2018).
  20. J. Kurchan, Quantum bound to chaos and the semiclassical limit, Journal of statistical physics 171, 965 (2018).
  21. A. Bastianello, A. De Luca, and R. Vasseur, Hydrodynamics of weak integrability breaking, J. Stat. Mech.: Theory and Experiment 2021, 114003 (2021).
  22. V. B. Bulchandani, On classical integrability of the hydrodynamics of quantum integrable systems, Journal of Physics A: Mathematical and Theoretical 50, 435203 (2017).
  23. A. P. Polychronakos, The physics and mathematics of calogero particles, Journal of Physics A: Mathematical and General 39, 12793 (2006).
Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.