Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The induced metric and bending lamination on the boundary of convex hyperbolic 3-manifolds (2306.08521v2)

Published 14 Jun 2023 in math.GT

Abstract: Let $S$ be a closed hyperbolic surface and $M = \left ( 0,1 \right )$. Suppose $h$ is a Riemannian metric on $S$ with curvature strictly greater than $-1$, $h{*}$ is a Riemannian metric on $S$ with curvature strictly less than $1$, and every contractible closed geodesic with respect to $h{*}$ has length strictly greater than $2\pi$. Let $L$ be a measured lamination on $S$ such that every closed leaf has weight strictly less than $\pi$. Then, we prove the existence of a convex hyperbolic metric $g$ on the interior of $M$ that induces the Riemannian metric $h$ (respectively $h{*}$) as the first (respectively third) fundamental form on $S \times \left{ 0\right}$ and induces a pleated surface structure on $S \times \left{ 1\right}$ with bending lamination $L$. This statement remains valid even in limiting cases where the curvature of $h$ is constant and equal to $-1$. Additionally, when considering a conformal class $c$ on $S$, we show that there exists a convex hyperbolic metric $g$ on the interior of $M$ that induces $c$ on $S \times \left{ 0\right}$, which is viewed as one component of the ideal boundary at infinity of $(M,g)$, and induces a pleated surface structure on $S \times \left{ 0\right}$ with bending lamination $L$. Our proof differs from previous work by Lecuire for these two last cases. Moreover, when we consider a lamination which is small enough, in a sense that we will define, and a hyperbolic metric, we show that the metric on the interior of M that realizes these data is unique.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube