Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bending laminations on convex hulls of anti-de Sitter quasicircles (2006.13470v1)

Published 24 Jun 2020 in math.GT and math.DG

Abstract: Let $\lambda_-$ and $\lambda_+$ be two bounded measured laminations on the hyperbolic disk $\mathbb H2$, which "strongly fill" (definition below). We consider the left earthquakes along $\lambda_-$ and $\lambda_+$, considered as maps from the universal Teichm\"uller space $\mathcal T$ to itself, and we prove that the composition of those left earthquakes has a fixed point. The proof uses anti-de Sitter geometry. Given a quasi-symmetric homeomorphism $u:{\mathbb RP}1\to {\mathbb RP}1$, the boundary of the convex hull in $AdS3$ of its graph in ${\mathbb RP}1\times{\mathbb RP}1\simeq \partial AdS3$ is the disjoint union of two embedded copies of the hyperbolic plane, pleated along measured geodesic laminations. Our main result is that any pair of bounded measured laminations that "strongly fill" can be obtained in this manner.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube