Papers
Topics
Authors
Recent
2000 character limit reached

Photocurrents induced by structured light (2306.08099v2)

Published 13 Jun 2023 in cond-mat.mes-hall and physics.optics

Abstract: Advances in manipulating the structure of optical beams enable the study of interaction between structured light and low-dimensional semiconductor systems. We explore the photocurrents in two-dimensional systems excited by such inhomogeneous radiation with structured field. Besides the contribition associated with the intensity gradient, the photocurrent contains contributions driven by the gradients of the Stokes polarization parameters and the phase of the electromagnetic field. We develop a microscopic theory of the photocurrents induced by structured light and derive analytical expressions for all the photocurrent contributions at intraband transport of electrons. The theory is applied to analyze the radial and azimuthal photocurrents excited by twisted light beams carrying orbital angular momentum, and possible experiments to detect the photocurrents are discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. B. A. Knyazev and V. G. Serbo, Beams of photons with nonzero orbital angular momentum projection: new results, Phys. Usp. 61, 449 (2018).
  2. D. L. Andrews, Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic Press, Cambridge, 2011).
  3. V. N. Mantsevich and S. A. Tarasenko, Fluid photonic crystal from colloidal quantum dots, Phys. Rev. A 96, 033855 (2017).
  4. F. Meier and B. P. Zakharchenya, eds., Optical Orientation (North Holland, Amsterdam, 1984).
  5. B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach Science Publishers, Philadelphia, 1992).
  6. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science, Oxford, 2005).
  7. J. E. Sipe and A. I. Shkrebtii, Second-order optical response in semiconductors, Phys. Rev. B 61, 5337 (2000).
  8. S. A. Tarasenko, Direct current driven by ac electric field in quantum wells, Phys. Rev. B 83, 035313 (2011).
  9. M. V. Durnev and S. A. Tarasenko, High-frequency nonlinear transport and photogalvanic effects in 2D topological insulators, Ann. Phys. 531, 1800418 (2019).
  10. M. V. Durnev and S. A. Tarasenko, Edge photogalvanic effect caused by optical alignment of carrier momenta in two-dimensional dirac materials, Phys. Rev. B 103, 165411 (2021).
  11. N. V. Leppenen and L. E. Golub, Linear photogalvanic effect in surface states of topological insulators, Phys. Rev. B 107, L161403 (2023).
  12. G. F. Quinteiro and J. Berakdar, Electric currents induced by twisted light in quantum rings, Opt. Express 17, 20465 (2009).
  13. J. Wätzel and J. Berakdar, Centrifugal photovoltaic and photogalvanic effects driven by structured light, Sci. Rep. 6, 21475 (2016).
  14. G. F. Quinteiro and P. I. Tamborenea, Twisted-light-induced optical transitions in semiconductors: free-carrier quantum kinetics, Phys. Rev. B 82, 125207 (2010).
  15. V. I. Perel’ and Y. M. Pinskii, Constant current in conducting media due to a high-frequency electron electromagnetic field, Sov. Phys. Solid State 15, 688 (1973).
  16. S. Luryi, Photon-drag effect in intersubband absorption by a two-dimensional electron gas, Phys. Rev. Lett. 58, 2263 (1987).
  17. M. Glazov and S. Ganichev, High frequency electric field induced nonlinear effects in graphene, Phys. Rep. 535, 101 (2014).
  18. J. Lindhard, On the properties of a gas of charged particles, Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 28 (1954).
  19. G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005).
  20. See paragraph after Eq. (9) for details.
  21. To describe the energy relaxation of electrons one needs to go beyond the collision integral (4).
  22. M. V. Durnev and S. A. Tarasenko, Edge currents induced by ac electric field in two-dimensional Dirac structures, Appl. Sci. 13, 4080 (2023).
  23. A. V. Nesterov and V. G. Niziev, Laser beams with axially symmetric polarization, J. Phys. D: Appl. Phys. 33, 1817 (2000).
  24. M. V. Durnev, Faraday and Kerr rotation due to photoinduced orbital magnetization in a two-dimensional electron gas, Phys. Rev. B 108, 125418 (2023).

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 7 likes about this paper.