Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

High-precision interpolation of stellar atmospheres with a deep neural network using a 1D convolutional auto encoder for feature extraction (2306.06938v1)

Published 12 Jun 2023 in astro-ph.IM, astro-ph.SR, and stat.ML

Abstract: Given the widespread availability of grids of models for stellar atmospheres, it is necessary to recover intermediate atmospheric models by means of accurate techniques that go beyond simple linear interpolation and capture the intricacies of the data. Our goal is to establish a reliable, precise, lightweight, and fast method for recovering stellar model atmospheres, that is to say the stratification of mass column, temperature, gas pressure, and electronic density with optical depth given any combination of the defining atmospheric specific parameters: metallicity, effective temperature, and surface gravity, as well as the abundances of other key chemical elements. We employed a fully connected deep neural network which in turn uses a 1D convolutional auto-encoder to extract the nonlinearities of a grid using the ATLAS9 and MARCS model atmospheres. This new method we call iNNterpol effectively takes into account the nonlinearities in the relationships of the data as opposed to traditional machine-learning methods, such as the light gradient boosting method (LightGBM), that are repeatedly used for their speed in well-known competitions with reduced datasets. We show a higher precision with a convolutional auto-encoder than using principal component analysis as a feature extractor.We believe it constitutes a useful tool for generating fast and precise stellar model atmospheres, mitigating convergence issues, as well as a framework for future developments. The code and data for both training and direct interpolation are available online at https://github.com/cwestend/iNNterpol for full reproducibility and to serve as a practical starting point for other continuous 1D data in the field and elsewhere.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube