Papers
Topics
Authors
Recent
Search
2000 character limit reached

Computing Multi-Eigenpairs of High-Dimensional Eigenvalue Problems Using Tensor Neural Networks

Published 22 May 2023 in math.NA and cs.NA | (2305.12656v1)

Abstract: In this paper, we propose a type of tensor-neural-network-based machine learning method to compute multi-eigenpairs of high dimensional eigenvalue problems without Monte-Carlo procedure. Solving multi-eigenvalues and their corresponding eigenfunctions is one of the basic tasks in mathematical and computational physics. With the help of tensor neural network and deep Ritz method, the high dimensional integrations included in the loss functions of the machine learning process can be computed with high accuracy. The high accuracy of high dimensional integrations can improve the accuracy of the machine learning method for computing multi-eigenpairs of high dimensional eigenvalue problems. Here, we introduce the tensor neural network and design the machine learning method for computing multi-eigenpairs of the high dimensional eigenvalue problems. The proposed numerical method is validated with plenty of numerical examples.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.