Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor Neural Network Based Machine Learning Method for Elliptic Multiscale Problems (2403.16380v1)

Published 25 Mar 2024 in math.NA and cs.NA

Abstract: In this paper, we introduce a type of tensor neural network based machine learning method to solve elliptic multiscale problems. Based on the special structure, we can do the direct and highly accurate high dimensional integrations for the tensor neural network functions without Monte Carlo process. Here, with the help of homogenization techniques, the multiscale problem is first transformed to the high dimensional limit problem with reasonable accuracy. Then, based on the tensor neural network, we design a type of machine learning method to solve the derived high dimensional limit problem. The proposed method in this paper brings a new way to design numerical methods for computing more general multiscale problems with high accuracy. Several numerical examples are also provided to validate the accuracy of the proposed numerical methods.

Summary

We haven't generated a summary for this paper yet.