Papers
Topics
Authors
Recent
2000 character limit reached

Distributed Gradient Descent for Functional Learning (2305.07408v3)

Published 12 May 2023 in stat.ML and cs.LG

Abstract: In recent years, different types of distributed and parallel learning schemes have received increasing attention for their strong advantages in handling large-scale data information. In the information era, to face the big data challenges {that} stem from functional data analysis very recently, we propose a novel distributed gradient descent functional learning (DGDFL) algorithm to tackle functional data across numerous local machines (processors) in the framework of reproducing kernel Hilbert space. Based on integral operator approaches, we provide the first theoretical understanding of the DGDFL algorithm in many different aspects of the literature. On the way of understanding DGDFL, firstly, a data-based gradient descent functional learning (GDFL) algorithm associated with a single-machine model is proposed and comprehensively studied. Under mild conditions, confidence-based optimal learning rates of DGDFL are obtained without the saturation boundary on the regularity index suffered in previous works in functional regression. We further provide a semi-supervised DGDFL approach to weaken the restriction on the maximal number of local machines to ensure optimal rates. To our best knowledge, the DGDFL provides the first divide-and-conquer iterative training approach to functional learning based on data samples of intrinsically infinite-dimensional random functions (functional covariates) and enriches the methodologies for functional data analysis.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 6 likes about this paper.